- (转)优秀的 python 机器学习库
patrick75
python机器学习python机器学习
优秀的python机器学习库IntroductionThereisnodoubtthatneuralnetworks,andmachinelearningingeneral,hasbeenoneofthehottesttopicsintechthepastfewyearsorso.It’seasytoseewhywithallofthereallyinterestinguse-casestheys
- 卷积神经网络(Convolutional Neural Network, CNN)
不想秃头的程序
神经网络语音识别人工智能深度学习网络卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专门用于处理图像、视频等网格数据的深度学习模型。它通过卷积层自动提取数据的特征,并利用空间共享权重和池化层减少参数量和计算复杂度,成为计算机视觉领域的核心技术。以下是CNN的详细介绍:一、核心思想CNN的核心目标是从图像中自动学习层次化特征,并通过空间共享权重和平移不变性减少参数量和计算成本。其关键组件包括:卷积层(
- 微软全新开源的Agentic Web网络项目:NLWeb详解
kevin luan
AI工作流编程microsoft前端网络
引言在2025年5月的MicrosoftBuild开发者大会上,微软推出了一个全新的开源项目——NLWeb(NaturalLanguageWeb,自然语言网络),被誉为“AgenticWeb(代理网络)”的基石,目标是将传统网页转变为支持自然语言交互的智能AI应用。微软将其比作Web时代的HTML,旨在通过简单的方式为网站添加对话式AI接口,让用户和AI代理能够以自然语言直接查询和交互网站内容。本
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- 使用YOLOv5-ONNX-PyQT-EXE: 全栈式对象检测应用的构建与部署
使用YOLOv5-ONNX-PyQT-EXE:全栈式对象检测应用的构建与部署去发现同类优质开源项目:https://gitcode.com/在计算机视觉领域,实时对象检测是一个至关重要的任务。是一个开源项目,它将流行的YOLOv5对象检测模型集成到ONNX(OpenNeuralNetworkExchange)中,并通过PyQT构建了一个可执行的应用程序,使得非开发人员也能轻松地进行对象检测。项目简
- RNN笔记
sjtu_哈基坤
LLM随笔rnn笔记人工智能
来源见此处概述RNN(RecurrentNeuralNetwork)RNN之所以称为循环神经网络,是因为一个序列的当前的输出与前面的输出也有关.具体表现是网络会对前面的信息进行记忆并且应用于当前输出的计算中.即隐藏层之间的节点也是有连接的.并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出.理论上RNN能对任何长度的序列进行处理,但是在实践中,为了降低复杂性,往往假设当前状态只与前面几
- Word 中将 LaTex 代码渲染为公式的两种方法
斐夷所非
mathematicsLaTex代码转换
示例代码\mathscr{F}\left[f_1(t)\cdotf_2(t)\right]=\frac1{2\pi}F_1(\omega)*F_2(\omega)1、Word自带的公式转换功能Alt+=新建公式框,将LaTex代码粘贴到公式框中,【专用】如果把长公式的LaTex代码粘贴到公式框中出现异常,可以先粘贴LaTex代码,再选中要转换的代码后按Alt+=生成公式框Word中公式位置快捷键A
- 用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
点我头像干啥
AI深度学习pytorch神经网络
引言在深度学习领域,研究人员不断探索更接近生物神经系统工作方式的模型。液态神经网络(LiquidNeuralNetworks,LNN)正是这样一种受生物神经元动态特性启发的创新架构。本文将带你了解LNN的核心概念,并展示如何使用PyTorch实现这种前沿模型。一、什么是液态神经网络?液态神经网络是由MIT研究人员提出的一种新型神经网络架构,它模仿了生物神经系统的几个关键特性:动态连接:神经元之间的
- 深度学习在人脸识别中的应用及Python实现
loop_syntax648
机器学习-深度学习
人脸识别是一种通过计算机技术识别和验证人脸的方法,近年来深度学习在人脸识别领域取得了显著的进展。深度学习模型能够学习和提取人脸图像中的高级特征,从而实现准确的人脸识别。本文将介绍深度学习在人脸识别中的应用,并提供Python实现的源代码。深度学习模型通常基于卷积神经网络(ConvolutionalNeuralNetwork,CNN)进行人脸识别。CNN是一种专门用于处理图像和视觉数据的神经网络模型
- 推荐项目:hedera——Unity的3D常春藤模拟生长工具
施刚爽
推荐项目:hedera——Unity的3D常春藤模拟生长工具hederapaint3DivyintheUnityEditor,watchprocedurallygeneratedmeshessimulategrowthandclinginginreal-time项目地址:https://gitcode.com/gh_mirrors/he/hedera项目介绍hedera是一个专门为Unity开发者
- 阿里重磅开源 Mnn3dAvatar:3D 数字人实时面捕,直播带货新利器!
Icoolkj
人工智能开源mnn3d
阿里巴巴于近日有了重磅之举——开源全新的3D数字人框架Mnn3dAvatar。这一框架犹如一颗投入平静湖面的巨石,为开发者们带来了强大的实时面部捕捉与3D虚拟角色生成工具,凭借其显著的高效性与易用性,极有可能为直播带货、虚拟展示等场景带来翻天覆地的变革。Mnn3dAvatar基于阿里巴巴开源的轻量级深度学习推理框架MNN(MobileNeuralNetwork)开发而成。与传统的Live2D技术不
- MNN 支持 InternVL 多模态大模型
夕阳叹
mnn深度学习人工智能LLM
MNN支持InternVL多模态大模型1.背景介绍InternVL(https://modelscope.cn/models/OpenGVLab/InternVL2_5-1B)是一个多模态模型,结合了视觉和语言处理能力,适用于图像理解、视觉问答等任务,相比QwenVL更为轻量。为了使InternVL模型能够在MNN(MobileNeuralNetwork)推理框架中高效运行,我们对其进行了适配和优
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- Tensorflow实现经典CNN网络AlexNet
您懂我意思吧
python开发tensorflowcnn人工智能python
1、概念AlexNet在ILSVRC-2012的比赛中获得top5错误率15.3%的突破(第二名为26.2%),其原理来源于2012年Alex的论文《ImageNetClassificationwithDeepConvolutionalNeuralNetworks》,这篇论文是深度学习火爆发展的一个里程碑和分水岭,加上硬件技术的发展,深度学习还会继续火下去。2、AlexNet网络结构由于受限于当时
- **脉冲神经网络:探索发散创新的潜力**一、引言随着人工智能技术的飞速发展,神经网络已成为解决复杂问题的强大工具。其中,脉冲神经网络(Spiking Neural Network,SNN)作为一种模拟
weixin_43880734
人工智能神经网络深度学习python
脉冲神经网络:探索发散创新的潜力一、引言随着人工智能技术的飞速发展,神经网络已成为解决复杂问题的强大工具。其中,脉冲神经网络(SpikingNeuralNetwork,SNN)作为一种模拟生物神经网络的工作机制,因其高效、节能的特性而受到广泛关注。本文将深入探讨脉冲神经网络的基本原理、创新应用以及发展前景。二、脉冲神经网络概述脉冲神经网络是一种模拟生物神经网络中神经元之间通信方式的网络。与传统的人
- 人工神经网络:架构原理与技术解析
weixin_47233946
架构
##引言在深度学习和人工智能领域,人工神经网络(ArtificialNeuralNetwork,ANN)作为模拟人脑认知机制的核心技术,已在图像识别、自然语言处理和强化学习等领域实现了革命性突破。从AlphaGo击败人类顶尖棋手到ChatGPT的对话生成能力,ANN的进化持续推动技术边界的扩展。本文将深入剖析人工神经网络的核心原理、技术实现与发展趋势。##一、基础概念与数学模型###1.1生物启发
- 马斯克YC技术核弹全拆解:Neuralink信号编译器架构·星舰着陆AI代码·AGI防御协议(附可复现算法核心/开源替代方案/中国技术对标路径)
卡奥斯开源社区官方
agi
一、Neuralink技术栈深度剖析▶神经信号编译架构(基于已公开专利US20220369936)关键算法实现:#运动意图解码核心(简化版)importnumpyasnpfromsklearn.ensembleimportRandomForestClassifierclassNeuralDecoder:def__init__(self):self.model=RandomForestClassif
- 用无人机和AI守护高原净土:高海拔自然保护区的垃圾检测新方法
是纯一呀
DeepLearningAI无人机人工智能计算机视觉
这篇题为《AutomaticDetectionofScatteredGarbageRegionsUsingSmallUnmannedAerialVehicleLow-AltitudeRemoteSensingImagesforHigh-AltitudeNaturalReserveEnvironmentalProtection》的论文,发表于EnvironmentalScience&Technolo
- 探秘 Drain3:一款高效日志异常检测神器
尚舰舸Elsie
探秘Drain3:一款高效日志异常检测神器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于深度学习的日志异常检测系统,由LogPAI团队开发并开源。它旨在帮助运维人员和数据科学家快速发现系统日志中的异常行为,从而及时预测和处理潜在的问题,提升系统的稳定性和安全性。技术分析Drain3的核心技术是利用一维卷积神经网络(1DConvolutionalNeuralNet
- DCRNN模型复现报告
神经网络15044
仿真模型python算法算法网络目标检测开发语言python
DCRNN模型复现报告1.项目概述本报告将完整复现GitHub仓库https://github.com/liyaguang/DCRNN中的DiffusionConvolutionalRecurrentNeuralNetwork(DCRNN)模型。DCRNN是一种用于交通预测的深度学习模型,结合了图卷积网络和循环神经网络,能够有效处理交通网络中的时空依赖关系。1.1DCRNN模型特点扩散卷积层:将空
- A Survey on Deep Learning Techniques Applied to medical image analysis
AI天才研究院
AI人工智能与大数据自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.BackgroundandKeyConceptsIntroductionKeyTerms&Concepts3.CoreTechnicalConceptsandOperationsConvolutionalNeuralNetwork(CNN)StructureofaCNNLayerBuildingBlocksofCNNConvolutionalLaye
- 【python实用小脚本-111】基于PyTorch的人脸口罩检测系统技术文档
Kyln.Wu
Pythonpythonpytorch开发语言
项目概述本项目是一个基于PyTorch框架开发的人脸口罩检测系统,能够识别图像中人物是否佩戴口罩,并区分三种状态:正确佩戴口罩(绿色框)、不正确佩戴口罩(橙色框)和未佩戴口罩(红色框)。该项目由开发者Abhinand(GitHub:abhinand5)创建,代码托管在GitHub上。系统架构系统采用FasterR-CNN(Region-basedConvolutionalNeuralNetwork
- 6月19日复盘
四万二千
人工智能transformer
6月19日复盘二、分词与词向量分词和词向量是NLP的基础技术。1.分词分词是将连续的文本分割成独立的词汇单元(tokens)的过程。这些单元可以是单词、符号或子词。1.1中文特性中文句子由连续的汉字组成,没有明显的词边界:词与词之间没有分隔符英文:Ilovenaturallanguageprocessing.中文:我喜欢自然语言处理。词是最基本的语义单元。为了处理文本信息,须将连续的序列分割成有意
- 道路点云分割+边界提取+中心线方法总结
asdbhkasgb
相关论文深度学习计算机视觉人工智能算法3d
1.FastLIDAR-basedRoadDetectionUsingFullyConvolutionalNeuralNetworks2017流程点云数据转换为俯视图图像从激光雷达获取的点云数据是无结构的,因此需要先将其转换为适合全卷积神经网络(FCN)处理的格式。具体来说,作者在激光雷达的XY平面上创建一个网格,并将点云中的每个点分配到相应的网格单元。对每个网格单元计算一些基础统计数据,例如:平
- 探秘卷积神经网络(CNN):从原理到实战的深度解析
LNL13
cnn人工智能神经网络
在图像识别、视频处理等领域,卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)如同一位“超级侦探”,能够精准捕捉图像中的关键信息,实现对目标的快速识别与分析。从医疗影像诊断到自动驾驶中的路况感知,CNN凭借独特的架构设计和强大的特征提取能力,成为深度学习领域的中流砥柱。接下来,让我们深入探索CNN的奥秘。一、CNN的诞生背景与核心优势传统的神经网络,如多层感知机(ML
- python案例练习
网小鱼的学习笔记
Pythonpythonandroid开发语言
练习1:正五边形面积计算importmaths=eval(input('请输入正五角行边长'))#分子=5*边长^2molecules=5*s**2#分母=4*tan(pi/2)denominator=4*math.tan(math.pi/5)area=molecules/denominatorprint(f'{area=}')执行结果在这里插入代码片练习2:解联力方程式,鸡兔同笼问题题目:今有鸡
- 自然语言处理之文本分类:Transformer:文本分类数据集分析
zhubeibei168
自然语言处理自然语言处理分类transformer数据挖掘人工智能支持向量机
自然语言处理之文本分类:Transformer:文本分类数据集分析自然语言处理基础NLP概述自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,专注于使计算机能够理解、解释和生成人类语言。NLP技术广泛应用于文本分类、情感分析、机器翻译、问答系统、语音识别等场景。其核心挑战在于理解语言的复杂性和多义性,以及处理大
- GAN中的SSIM指标:图像质量评估的利器
这张生成的图像能检测吗
GAN系列人工智能计算机视觉算法生成对抗网络机器学习深度学习
GAN中的SSIM指标:图像质量评估的利器在生成对抗网络(GAN)的研究和应用中,如何客观地评估生成图像的质量一直是一个关键问题。传统的像素级指标如MSE和PSNR往往无法很好地反映人眼对图像质量的感知。而SSIM(StructuralSimilarityIndexMeasure,结构相似性指数)作为一种更贴近人类视觉感知的图像质量评估指标,在GAN的评估体系中发挥着重要作用。SSIM指标概述什么
- Happy-LLM task2 第一章 NLP 基础概念(2天)
unityのkiven
自然语言处理人工智能
NLP基础概念简介自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的核心分支,旨在让计算机理解、处理并生成人类语言,实现人机自然交互。一、NLP定义与目标NLP融合计算机科学、语言学、心理学等多学科知识,通过算法让计算机模拟人类的语言认知过程。其核心目标是打破自然语言与机器语言的壁垒,使计算机能处理语义、语境、情感等复杂语言要素,完成从基础分词到深层语义理解
- 基于Python的LSTM循环神经网络模型实战
缑宇澄
python
在处理具有时间序列特性的数据时,传统神经网络往往难以捕捉数据间的时序依赖关系。而循环神经网络(RecurrentNeuralNetwork,RNN)及其变体——长短期记忆网络(LongShort-TermMemory,LSTM),凭借独特的记忆机制,能够有效处理序列数据,在语音识别、自然语言处理、股票价格预测等领域展现出强大的优势。本文将深入解析LSTM的原理,并通过Python代码进行实战,展示
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本