2019-ACM-CCPC-Online-Contest
1、^&^
题意:
求一个最小的正整数\(C\),使得\((A\oplus C) \&(B\oplus C)\)最小。
思路:
对于\(A,B\)来说,对于他们的二进制的第\(i\)位,如果其中一个是\(0\),则\(A_i\&B_i=0\),所以只要找所有满足\(A_i=1,B_i=1\)的\(i\),将\(C\)的第\(i\)位置\(1\)就行了。所以答案就是\(A\&B\)。注意题目要求正整数。
代码:
/*
* @Author: Simon
* @Date: 2019-08-23 19:09:47
* @Last Modified by: Simon
* @Last Modified time: 2019-08-23 19:10:39
*/
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 200005
int a[maxn];
Int main(){
#ifndef ONLINE_JUDGE
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int T;cin>>T;
while(T--){
int a,b;cin>>a>>b;
int ans=(a&b);
cout<<(ans?ans:1)<
2、array
题意:
思路:
代码:
3、K-th occurrence
题意:
思路:
后缀数组+\(st\)表+主席树+二分
代码:
4、path
题意:
给你一个有向带权图,定义一条路径的值为所有你经过的边权的和,你可以经过任意一条边任意多的次数,问第\(k\)小的路径长度是多少?
思路:
优先级队列
听说是一个很套路的解法?那就记住吧,理解也只能感性的理解一下了。。
初始,将每个点为起点所连接的最短边放入优先级队列中,从队列顶端开始,第\(i\)次出队列,就是第\(i\)小的路径。根据第\(i\)小的路径转移出两种路径状态(假设第\(i\)小的路径最后走过的边为\(u-v\)):
\(1\)、第\(i\)小的路径加上从\(v\)出发的最短路径
\(2\)、最后走过的边由原来的\(u-v\),变为\(u-v'\),即从\(u\)节点出发的第一个比\(u-v\)边权大的一条边。
代码:
/*
* @Author: Simon
* @Date: 2019-08-29 13:13:45
* @Last Modified by: Simon
* @Last Modified time: 2019-08-29 14:42:14
*/
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 50005
struct node{
int u,v,w,rank;
node(){}
node(int u,int v,int w,int rank):u(u),v(v),w(w),rank(rank){}
bool operator <(const node&a)const{
return w>a.w;
}
};
int a[maxn];
struct pi{
int u,v,w;
pi(){}
pi(int u,int v,int w):u(u),v(v),w(w){}
bool operator <(const pi&a) const{
return wg[maxn];
Int main(){
#ifndef ONLINE_JUDGE
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int T;cin>>T;
while(T--){
int n,m,qq;cin>>n>>m>>qq;
priority_queueq;
for(int i=1;i<=m;i++){
int u,v,w;
cin>>u>>v>>w;
g[u].push_back({u,v,w});
}
for(int i=1;i<=n;i++) sort(g[i].begin(),g[i].end()); //按边权从小到大排序
for(int i=1;i<=n;i++) if(g[i].size()) q.push({g[i][0].u,g[i][0].v,g[i][0].w,0}); //初始将所有点的最短出边入队列
int Max=0; for(int i=1;i<=qq;i++) cin>>a[i],Max=max(Max,a[i]); //最大要算到第Max小的路径
vectorans;
for(int i=1;i<=Max;i++){
node now=q.top();q.pop();
ans.push_back(now.w); //第i次出队列的边权长度,就是第i小的路径长度
if(g[now.v].size()){ //1、从v点出发的最短边
int u=now.v,v=g[now.v][0].v,w=g[now.v][0].w;
q.push({u,v,w+now.w,0});
}
if(g[now.u].size()>now.rank+1){//2、由u-v转为u-v'
int u=now.u,v=g[now.u][now.rank+1].v,w=g[now.u][now.rank+1].w;
q.push({u,v,now.w+w-g[now.u][now.rank].w,now.rank+1});
}
}
for(int i=1;i<=qq;i++) cout<
5、huntian oy
题意:
求\(f(n,a,b)=\sum_{i=1}^n\sum_{j=1}^igcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1]\%(10^9+7)\)。
思路:
\(gcd(a^m-1,a^n-1)=a^{gcd(m,n)}-1\)。
推广:若\(a>b,\ gcd(a,b)=1\),则有\(gcd(a^m-b^m,a^n-b^n)=a^{gcd(n,m)}-b^{gcd(n,m)}\)。
不知道上面等式的也可以打表看一下,直接能看出来\(gcd(i^a-j^a,i^b-j^b)=i-j\)。
然后可得:
\[ f(n,a,b)=\sum_{i=1}^n\sum_{j=1}^i(i-j)[gcd(i,j)=1]=\sum_{i=1}^n\sum_{j=1}^ii[gcd(i,j)=1]-\sum_{i=1}^{n}\sum_{j=1}^ij[gcd(i,j)=1] \\\sum_{i=1}^ni\cdot\varphi(i)-\sum_{i=1}^n\frac{i\cdot\varphi(i)+[i=1]}{2}=\sum_{i=1}^ni\cdot\varphi(i)-\frac{1}{2}\sum_{i=1}^ni\cdot\varphi(i)-\frac{1}{2} \\=\frac{1}{2}(\sum_{i=1}^ni\cdot \varphi(i)-1) \]
令\(\phi(n)=\sum_{i=1}^ni\cdot \varphi(i),\ g(n)=n\cdot \varphi(n),\ id(n)=n\),由\(\sum_{d|n}\varphi(d)=n\)可得:
\[ \sum_{d|n}g*id(n)=\sum_{d|n}d\cdot \varphi(d)\cdot\frac{n}{d}=n\cdot\sum_{d|n}\varphi(d)=n^2 \\ \]
所以有:
\[ \frac{n\cdot(n+1)\cdot(2n+1)}{6}=\sum_{i=1}^ni^2=\sum_{i=1}^n\sum_{d|i}d\cdot \varphi(d)\cdot\frac{i}{d}=\sum_{i=1}^{n}i\sum_{d=1}^{\frac{n}{i}}d\cdot\varphi(d)=\sum_{i=1}^ni\cdot\phi(\frac{n}{i}) \]
我们要求的是\(\phi(n)\),也就是\(i=1\)时的值,所以就是:
\[ \phi(n)=\frac{n\cdot(n+1)\cdot(2n+1)}{6}-\sum_{i=2}^ni\cdot\phi(\frac{n}{i}) \]
带回原式中得:
\[ f(n,a,b)=\frac{1}{2}(\phi(n)-1)。 \]
代码:
/*
* @Author: Simon
* @Date: 2019-05-02 19:14:05
* @Last Modified by: Simon
* @Last Modified time: 2019-08-23 18:13:42
*/
#include
using namespace std;
#define INF 0x3f3f3f3f
#define maxn 1000000
#define Mod 2500005
#define inv2 500000004
const int mod=1e9+7;
int inv6;
struct HashMap//手写Hash
{
int head[Mod+5],key[Mod],value[Mod],nxt[Mod],tol;
inline void clear() { tol=0;memset(head,-1,sizeof(head)); }
HashMap(){clear();}
inline void insert(int k,int v)
{
int idx=k%Mod;
for(int i=head[idx];~i;i=nxt[i])
{
if(key[i]==k)
{
value[i]=min(value[i],v);
return ;
}
}
key[tol]=k;value[tol]=v;nxt[tol]=head[idx];head[idx]=tol++;
}
inline int operator [](const int &k) const
{
int idx=k%Mod;
for(int i=head[idx];~i;i=nxt[i])
{
if(key[i]==k) return value[i];
}
return -1;
}
}mp;
int prime[maxn],cnt=0;
long long Phi[maxn];
int sum[maxn]; //预处理i*phi(i)前缀和
bool vis[maxn]={1,1};
void Euler(){
Phi[1]=1;
for(int i=2;i>=1;
}
return ans;
}
int sum_1(int n){ //sum(1,2,3,……,n)
n%=mod;
return 1LL*n*(n+1)%mod*inv2%mod;
}
int sum_2(int n){ //sum(1,4,9,……,n^2)
n%=mod;
return 1LL*n*(n+1)%mod*(2*n+1)%mod*inv6%mod;
}
int dfs(int n){
if(n
6、Shuffle Card
题意:
初始给你一个按序的\([1,n]\)的排列。\(m\)次操作,每次将数\(x\)移到最前端,问最后这个排列是什么。
思路:
倒置整个初始排列,每次操作将\(x\ push\_back\)到数组末端。最后倒序输出,标记一下有没有输出过即可。
代码:
/*
* @Author: Simon
* @Date: 2019-08-23 20:18:17
* @Last Modified by: Simon
* @Last Modified time: 2019-08-23 20:20:44
*/
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 200005
int a[maxn];
bool vis[maxn];
Int main(){
#ifndef ONLINE_JUDGE
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n,m;cin>>n>>m;
for(int i=n;i>=1;i--) cin>>a[i];
for(int i=1;i<=m;i++){
int x;cin>>x;
a[++n]=x;
}
for(int i=n;i>=1;i--){
if(!vis[a[i]]) cout<
7、Windows Of CCPC
题意:
找规律。
思路:
找规律。
代码:
/*
* @Author: Simon
* @Date: 2019-08-23 20:38:59
* @Last Modified by: Simon
* @Last Modified time: 2019-08-23 21:26:25
*/
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 2005
char a[maxn][maxn];
Int main(){
#ifndef ONLINE_JUDGE
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
a[0][0]=a[0][1]=a[1][1]='C';a[1][0]='P';
for(int i=1;i<10;i++){
for(int p=(1<>T;
while(T--){
int n;cin>>n;
for(int i=0;i<(1<
8、Fishing Master
题意:
有\(n\)条鱼,煮熟每条鱼所花费的时间为\(a_i\),抓一条鱼所花费的时间为\(k\),问在一次只能煮一条鱼的条件下,煮熟所有的鱼,所花费的最少时间为多少?
思路:
假设所有煮鱼的时间总和为\(sum\),则总时间肯定不小于\(sum+k\)。即最理想的情况就是,第\(1\)条鱼需要花费\(k\)的时间来抓,以后抓的每一条鱼,都在前一条煮熟之前抓到。因此不花费额外的时间。但实际会出现,已经没有鱼可煮了,因此需要花费额外的时间来抓鱼,所以其实就是让这额外抓鱼的时间最少即可。
代码:
/*
* @Author: Simon
* @Date: 2019-08-25 14:00:56
* @Last Modified by: Simon
* @Last Modified time: 2019-08-25 14:11:55
*/
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 200005
int a[maxn];
Int main(){
#ifndef ONLINE_JUDGE
//freopen("input.in","r",stdin);
//freopen("output.out","w",stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int T;cin>>T;
while(T--){
int n,k,ans=0;cin>>n>>k;
for(int i=1;i<=n;i++) cin>>a[i],ans+=a[i];
sort(a+1,a+n+1,greater()); //按煮鱼时间从大到小排序,这样可以使得再煮第一条鱼的时候多抓几条鱼。
int tot=1/*目前的存货*/,num=1/*总共抓了多少条鱼*/;priority_queueq;
for(int i=1;i<=n;i++){
tot--;
if(tot<0){ //无鱼可煮时,需要用最少的时间来抓一条鱼来煮。
ans+=k-q.top();
q.pop();tot++,num++;
}
if(a[i]%k!=0) q.push(a[i]%k);
tot+=a[i]/k;num+=a[i]/k;
if(num>=n) break; //若抓鱼总数大于等于n则,不可能再花费额外的时间
}
cout<
9、Kaguya
题意:
思路:
概率动态规划+二分图
代码:
10、Touma Kazusa's function
题意:
思路:
莫比乌斯反演+莫队
代码:
11、sakura
题意:
思路:
中国剩余定理+卢卡斯定理
代码: