2019-ACM-CCPC-Online-Contest

2019-ACM-CCPC-Online-Contest

1、^&^

题意:

​ 求一个最小的正整数\(C\),使得\((A\oplus C) \&(B\oplus C)\)最小。

思路:

​ 对于\(A,B\)来说,对于他们的二进制的第\(i\)位,如果其中一个是\(0\),则\(A_i\&B_i=0\),所以只要找所有满足\(A_i=1,B_i=1\)\(i\),将\(C\)的第\(i\)位置\(1\)就行了。所以答案就是\(A\&B\)注意题目要求正整数。

代码:

/*
 * @Author: Simon 
 * @Date: 2019-08-23 19:09:47 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-08-23 19:10:39
 */
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 200005
int a[maxn];
Int main(){
#ifndef ONLINE_JUDGE
    //freopen("input.in","r",stdin);
    //freopen("output.out","w",stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    int T;cin>>T;
    while(T--){
        int a,b;cin>>a>>b;
        int ans=(a&b);
        cout<<(ans?ans:1)<

2、array

题意:

思路:

代码:


3、K-th occurrence

题意:

思路:

​ 后缀数组+\(st\)表+主席树+二分

代码:


4、path

题意:

​ 给你一个有向带权图,定义一条路径的值为所有你经过的边权的和,你可以经过任意一条边任意多的次数,问第\(k\)小的路径长度是多少?

思路:

​ 优先级队列

​ 听说是一个很套路的解法?那就记住吧,理解也只能感性的理解一下了。。

​ 初始,将每个点为起点所连接的最短边放入优先级队列中,从队列顶端开始,第\(i\)次出队列,就是第\(i\)小的路径。根据第\(i\)小的路径转移出两种路径状态(假设第\(i\)小的路径最后走过的边为\(u-v\)):

\(1\)、第\(i\)小的路径加上从\(v\)出发的最短路径

\(2\)、最后走过的边由原来的\(u-v\),变为\(u-v'\),即从\(u\)节点出发的第一个比\(u-v\)边权大的一条边。

代码:

/*
 * @Author: Simon 
 * @Date: 2019-08-29 13:13:45 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-08-29 14:42:14
 */
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 50005
struct node{
    int u,v,w,rank;
    node(){}
    node(int u,int v,int w,int rank):u(u),v(v),w(w),rank(rank){}
    bool operator <(const node&a)const{
        return w>a.w;
    }
};
int a[maxn];
struct pi{
    int u,v,w;
    pi(){}
    pi(int u,int v,int w):u(u),v(v),w(w){}
    bool operator <(const pi&a) const{
        return wg[maxn];
Int main(){
#ifndef ONLINE_JUDGE
    //freopen("input.in","r",stdin);
    //freopen("output.out","w",stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    int T;cin>>T;
    while(T--){
        int n,m,qq;cin>>n>>m>>qq;
        priority_queueq;
        for(int i=1;i<=m;i++){
            int u,v,w;
            cin>>u>>v>>w;
            g[u].push_back({u,v,w});
        }
        for(int i=1;i<=n;i++) sort(g[i].begin(),g[i].end()); //按边权从小到大排序
        for(int i=1;i<=n;i++) if(g[i].size()) q.push({g[i][0].u,g[i][0].v,g[i][0].w,0}); //初始将所有点的最短出边入队列
        int Max=0; for(int i=1;i<=qq;i++) cin>>a[i],Max=max(Max,a[i]); //最大要算到第Max小的路径
        vectorans;
        for(int i=1;i<=Max;i++){
            node now=q.top();q.pop();
            ans.push_back(now.w); //第i次出队列的边权长度,就是第i小的路径长度
            if(g[now.v].size()){ //1、从v点出发的最短边
                int u=now.v,v=g[now.v][0].v,w=g[now.v][0].w;
                q.push({u,v,w+now.w,0});
            }
            if(g[now.u].size()>now.rank+1){//2、由u-v转为u-v'
                int u=now.u,v=g[now.u][now.rank+1].v,w=g[now.u][now.rank+1].w;
                q.push({u,v,now.w+w-g[now.u][now.rank].w,now.rank+1});
            }
        }
        for(int i=1;i<=qq;i++) cout<

5、huntian oy

题意:

​ 求\(f(n,a,b)=\sum_{i=1}^n\sum_{j=1}^igcd(i^a-j^a,i^b-j^b)[gcd(i,j)=1]\%(10^9+7)\)

思路:

\(gcd(a^m-1,a^n-1)=a^{gcd(m,n)}-1\)

​ 推广:若\(a>b,\ gcd(a,b)=1\),则有\(gcd(a^m-b^m,a^n-b^n)=a^{gcd(n,m)}-b^{gcd(n,m)}\)

​ 不知道上面等式的也可以打表看一下,直接能看出来\(gcd(i^a-j^a,i^b-j^b)=i-j\)

然后可得:
\[ f(n,a,b)=\sum_{i=1}^n\sum_{j=1}^i(i-j)[gcd(i,j)=1]=\sum_{i=1}^n\sum_{j=1}^ii[gcd(i,j)=1]-\sum_{i=1}^{n}\sum_{j=1}^ij[gcd(i,j)=1] \\\sum_{i=1}^ni\cdot\varphi(i)-\sum_{i=1}^n\frac{i\cdot\varphi(i)+[i=1]}{2}=\sum_{i=1}^ni\cdot\varphi(i)-\frac{1}{2}\sum_{i=1}^ni\cdot\varphi(i)-\frac{1}{2} \\=\frac{1}{2}(\sum_{i=1}^ni\cdot \varphi(i)-1) \]
\(\phi(n)=\sum_{i=1}^ni\cdot \varphi(i),\ g(n)=n\cdot \varphi(n),\ id(n)=n\),由\(\sum_{d|n}\varphi(d)=n\)可得:
\[ \sum_{d|n}g*id(n)=\sum_{d|n}d\cdot \varphi(d)\cdot\frac{n}{d}=n\cdot\sum_{d|n}\varphi(d)=n^2 \\ \]
所以有:
\[ \frac{n\cdot(n+1)\cdot(2n+1)}{6}=\sum_{i=1}^ni^2=\sum_{i=1}^n\sum_{d|i}d\cdot \varphi(d)\cdot\frac{i}{d}=\sum_{i=1}^{n}i\sum_{d=1}^{\frac{n}{i}}d\cdot\varphi(d)=\sum_{i=1}^ni\cdot\phi(\frac{n}{i}) \]
我们要求的是\(\phi(n)\),也就是\(i=1\)时的值,所以就是:
\[ \phi(n)=\frac{n\cdot(n+1)\cdot(2n+1)}{6}-\sum_{i=2}^ni\cdot\phi(\frac{n}{i}) \]
带回原式中得:
\[ f(n,a,b)=\frac{1}{2}(\phi(n)-1)。 \]

代码:

/*
 * @Author: Simon 
 * @Date: 2019-05-02 19:14:05 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-08-23 18:13:42
 */
#include
using namespace std;
#define INF 0x3f3f3f3f
#define maxn 1000000
#define Mod 2500005
#define inv2 500000004
const int mod=1e9+7;
int inv6;
struct HashMap//手写Hash
{
    int head[Mod+5],key[Mod],value[Mod],nxt[Mod],tol;
    inline void clear() { tol=0;memset(head,-1,sizeof(head)); }
    HashMap(){clear();}
    inline void insert(int k,int v)
    {
        int idx=k%Mod;
        for(int i=head[idx];~i;i=nxt[i])
        {
            if(key[i]==k)
            {
                value[i]=min(value[i],v);
                return ;
            }
        }
        key[tol]=k;value[tol]=v;nxt[tol]=head[idx];head[idx]=tol++;
    }
    inline int operator [](const int &k) const
    {
        int idx=k%Mod;
        for(int i=head[idx];~i;i=nxt[i])
        {
            if(key[i]==k) return value[i];
        }
        return -1;
    }
}mp;
int prime[maxn],cnt=0;
long long Phi[maxn];
int sum[maxn]; //预处理i*phi(i)前缀和
bool vis[maxn]={1,1};
void Euler(){
    Phi[1]=1;
    for(int i=2;i>=1;
    }
    return ans;
}
int sum_1(int n){ //sum(1,2,3,……,n)
    n%=mod;
    return 1LL*n*(n+1)%mod*inv2%mod;
}
int sum_2(int n){ //sum(1,4,9,……,n^2)
    n%=mod;
    return 1LL*n*(n+1)%mod*(2*n+1)%mod*inv6%mod;
}
int dfs(int n){ 
    if(n

6、Shuffle Card

题意:

​ 初始给你一个按序的\([1,n]\)的排列。\(m\)次操作,每次将数\(x\)移到最前端,问最后这个排列是什么。

思路:

​ 倒置整个初始排列,每次操作将\(x\ push\_back\)到数组末端。最后倒序输出,标记一下有没有输出过即可。

代码:

/*
 * @Author: Simon 
 * @Date: 2019-08-23 20:18:17 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-08-23 20:20:44
 */
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 200005
int a[maxn];
bool vis[maxn];
Int main(){
#ifndef ONLINE_JUDGE
    //freopen("input.in","r",stdin);
    //freopen("output.out","w",stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    int n,m;cin>>n>>m;
    for(int i=n;i>=1;i--) cin>>a[i];
    for(int i=1;i<=m;i++){
        int x;cin>>x;
        a[++n]=x;
    }
    for(int i=n;i>=1;i--){
        if(!vis[a[i]]) cout<

7、Windows Of CCPC

题意:

​ 找规律。

思路:

​ 找规律。

代码:

/*
 * @Author: Simon 
 * @Date: 2019-08-23 20:38:59 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-08-23 21:26:25
 */
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 2005
char a[maxn][maxn];
Int main(){
#ifndef ONLINE_JUDGE
    //freopen("input.in","r",stdin);
    //freopen("output.out","w",stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    a[0][0]=a[0][1]=a[1][1]='C';a[1][0]='P';
    for(int i=1;i<10;i++){
        for(int p=(1<>T;
    while(T--){
        int n;cin>>n;
        for(int i=0;i<(1<

8、Fishing Master

题意:

​ 有\(n\)条鱼,煮熟每条鱼所花费的时间为\(a_i\),抓一条鱼所花费的时间为\(k\),问在一次只能煮一条鱼的条件下,煮熟所有的鱼,所花费的最少时间为多少?

思路:

​ 假设所有煮鱼的时间总和为\(sum\),则总时间肯定不小于\(sum+k\)。即最理想的情况就是,第\(1\)条鱼需要花费\(k\)的时间来抓,以后抓的每一条鱼,都在前一条煮熟之前抓到。因此不花费额外的时间。但实际会出现,已经没有鱼可煮了,因此需要花费额外的时间来抓鱼,所以其实就是让这额外抓鱼的时间最少即可。

代码:

/*
 * @Author: Simon 
 * @Date: 2019-08-25 14:00:56 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-08-25 14:11:55
 */
#include
using namespace std;
typedef int Int;
#define int long long
#define INF 0x3f3f3f3f
#define maxn 200005
int a[maxn];
Int main(){
#ifndef ONLINE_JUDGE
    //freopen("input.in","r",stdin);
    //freopen("output.out","w",stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);
    int T;cin>>T;
    while(T--){
        int n,k,ans=0;cin>>n>>k;
        for(int i=1;i<=n;i++) cin>>a[i],ans+=a[i];
        sort(a+1,a+n+1,greater()); //按煮鱼时间从大到小排序,这样可以使得再煮第一条鱼的时候多抓几条鱼。
        int tot=1/*目前的存货*/,num=1/*总共抓了多少条鱼*/;priority_queueq;
        for(int i=1;i<=n;i++){
            tot--;
            if(tot<0){ //无鱼可煮时,需要用最少的时间来抓一条鱼来煮。
                ans+=k-q.top();
                q.pop();tot++,num++;
            } 
            if(a[i]%k!=0) q.push(a[i]%k);
            tot+=a[i]/k;num+=a[i]/k;
            if(num>=n) break; //若抓鱼总数大于等于n则,不可能再花费额外的时间
        }
        cout<

9、Kaguya

题意:

思路:

​ 概率动态规划+二分图

代码:


10、Touma Kazusa's function

题意:

思路:

​ 莫比乌斯反演+莫队

代码:

11、sakura

题意:

思路:

​ 中国剩余定理+卢卡斯定理

代码:

你可能感兴趣的:(2019-ACM-CCPC-Online-Contest)