$bzoj2560$ 串珠子 容斥+$dp$

正解:容斥+$dp$

解题报告:

传送门$QwQ$

$umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多少种方案可以连成一张联通图

显然考虑容斥呗?设$f_i$表示状态为$i$的点连成联通图的合法方案,$g_i$表示状态为$i$的点随便连边的所有方案

显然$g_i$可以先预处理出来?就等于$\prod_{u,v\in i}a_{u,v}$.然后$f_i$就等于$g_i$减去不合法的数量.不合法数量显然就考虑枚举子集${i}'$,就等于$\sum f_{{i}'}\cdot g_{i-{i}'}$.

但是这样显然依然会有锅,即一个不合法方案会被枚举其包含的联通块次.为了保证不重不漏,就只用枚指定点的联通块大小,比较通常的做法就枚举最大/最小点的联通块大小,也就钦定${i}'$中包含了最大/最小的点

然后就做完了$QwQ$

$over$

因为一些不知名原因我本机$AC$,$BZOJ$上$WA$了(事实上是,$emacs\ AC$,$lemon\ WA$,$darkbzoj\ WA$,$QAQ$

但是我暂时懒得搞了先把代码放上来趴$kk$

 

#include
using namespace std;
#define il inline
#define lf double
#define int long long
#define ll long long
#define gc getchar()
#define ri register int
#define rc register char
#define rb register bool
#define lowbit(x) (x&(-x))
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define my(i,x,y) for(ri i=x;i>=y;--i)
#define gdgs(i,x) for(ri i=x-lowbit(x);i;i-=lowbit(i))

const int N=20,mod=1000000007;
int n,a[N][N],lg[1<<N],tot,d[N],cnt;
ll g[1<1<<N],re[N];

il int read()
{
    rc ch=gc;ri x=0;rb y=1;
    while(ch!='-' && (ch>'9' || ch<'0'))ch=gc;
    if(ch=='-')ch=gc,y=0;
    while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc;
    return y?x:-x;
}

signed main()
{
    freopen("2560.in","r",stdin);freopen("2560.out","w",stdout);
    n=read();rp(i,0,n-1)rp(j,0,n-1)a[i][j]=read();tot=(1<1;rp(i,0,n-1)lg[1<0]=1;
    rp(i,1,tot)
    {ll tmp=1;gdgs(j,i)tmp=1ll*tmp*(a[lg[lowbit(i)]][lg[lowbit(j)]]+1)%mod;g[i]=g[i-lowbit(i)]*tmp%mod;}
    rp(i,1,tot)
    {
        cnt=0;gdgs(j,i)d[cnt++]=lowbit(j);
        rp(j,1,(1<1)re[j]=re[j-lowbit(j)]|d[lg[lowbit(j)]],f[i]=(f[i]+f[i^re[j]]*g[re[j]])%mod;
        f[i]=(g[i]-f[i]+mod)%mod;
    }
    printf("%lld\n",f[tot]);
    return 0;
}
View Code

 

 

 

你可能感兴趣的:($bzoj2560$ 串珠子 容斥+$dp$)