线段树整理

//每天整理一点,太多了 

https://www.cnblogs.com/TheRoadToTheGold/p/6254255.html#4175712(ORZ)

POJ  3468 板子题 注意下数据范围 (因为int会爆,以后一定好好看题,浪费我10min....)

http://poj.org/problem?id=3468

#include//线段树题目集
#include
#include
using namespace std;
const int maxn = 4e5 + 15;
typedef long long ll;
typedef struct
{
    ll l,r,sum,f;//sum为区间和,f为懒人标记
}node;
node Tree[maxn];//线段树
ll n,q;
ll _left,_right,value;
void buildTree(int l,int r,int cur)
{
    Tree[cur].l = l;
    Tree[cur].r = r;//左右区间范围
    if(l==r)
    {
        scanf("%lld",&Tree[cur].sum);
        return;
    }
    int mid = (l + r) >> 1;
    buildTree(l,mid,cur*2);
    buildTree(mid+1,r,cur<<1|1);
    Tree[cur].sum = Tree[cur<<1].sum + Tree[cur<<1|1].sum; 
}//建树
void Down(int cur)
{
    Tree[2*cur].f += Tree[cur].f;
    Tree[2*cur+1].f += Tree[cur].f;
    Tree[2*cur].sum += (Tree[2*cur].r - Tree[2*cur].l + 1)*Tree[cur].f;
    Tree[2*cur+1].sum += (Tree[2*cur+1].r - Tree[2*cur+1].l + 1)*Tree[cur].f;
    Tree[cur].f = 0;//因为已经传下去了,所以清零
}//懒标记下传
ll ans;
void ask_interval(int cur)
{
    if(_left<=Tree[cur].l&&Tree[cur].r<=_right)
    {
        ans += Tree[cur].sum;
        return;
    }
    if(Tree[cur].f)
        Down(cur);//下传懒人标记
    ll mid = (Tree[cur].l + Tree[cur].r) >> 1;//mid 中间值
    if(_left<=mid)
        ask_interval(cur<<1);
    if(_right>mid)
        ask_interval(cur<<1|1);  
}
void change_interval(int cur)
{
    if(_left<=Tree[cur].l&&Tree[cur].r<=_right)//if node 在区间范围内
    {
        Tree[cur].sum += (Tree[cur].r - Tree[cur].l + 1)*value;
        Tree[cur].f += value;
        return;
    }
    if(Tree[cur].f)
        Down(cur);
    ll mid = (Tree[cur].l + Tree[cur].r) >> 1;//mid 中间值
    if(_left<=mid)
        change_interval(cur<<1);
    if(_right>mid)
        change_interval(cur<<1|1);
    Tree[cur].sum = Tree[cur<<1].sum + Tree[cur<<1|1].sum;//(important) 更新完后一定要更新sum的总和值  
}//线段树区间修改
int main()
{
    while(scanf("%lld%lld",&n,&q)==2)//写返回值,不然可能会有些很SB的output 超出limit
    {
        memset(Tree,0,sizeof(Tree));
        buildTree(1,n,1);//1 ~ n为范围,cur 为当前节点
        char cmd;
        while(q--)
        {
            ans = 0;
            getchar();
            scanf("%c",&cmd);//区间查询,区间修改
            scanf("%lld%lld",&_left,&_right);
            if(cmd=='Q')
            {   
                ask_interval(1);
                cout< 
 

 线段树 GSS1(求静态最大连续子段和)

(挺简单的,看代码就好了)

附个题目链接http://codevs.cn/problem/3981/

#include//线段树求GSS1(最长子区间范围)
using namespace std;//主要同于解决求每一个区间范围内的最大连续子串
const int maxn = 2e5 + 32;
typedef long long i64;//GSS1 1.全在左子树上 2.全在右子树上 3.左右连续区间都存在
template 
void read(T &x) 
{
    x=0; int f=1; char c=getchar();
    while(!isdigit(c)) { if(c=='-') f=-1; c=getchar(); }
    while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }
    x*=f;
}
void out(i64 ans)
{
    if(ans<0) { putchar('-'); ans=-ans;}
    char s[20];  int len=0;
    do s[++len]=ans%10+'0'; while(ans/=10);
    while(len) putchar(s[len--]); putchar('\n');
}
struct Node
{
    i64 sum,lmx,rmx,mx;//sum为区间和,lmx最大左连续区间和,rmx最大右连续区间和,mx最大区间连续值
    void clear()
    {
        sum = lmx = rmx = mx = 0;
    }
}Tree[4*maxn+1];
typedef struct Node nd;
void build_Tree(int node,int l,int r)
{
    if(l==r)
    {
        read(Tree[node].mx);
        Tree[node].lmx = Tree[node].rmx = Tree[node].sum = Tree[node].mx;
        return;
    }
    int mid = (l + r) >> 1;
    build_Tree(node<<1,l,mid);
    build_Tree(node<<1|1,mid+1,r);
    Tree[node].mx = max(Tree[node<<1].mx,Tree[node<<1|1].mx);
    Tree[node].mx = max(Tree[node].mx,Tree[node<<1].rmx +  Tree[node<<1|1].lmx);
    Tree[node].lmx = max(Tree[node<<1].lmx,Tree[node<<1].sum+Tree[node<<1|1].lmx);
    Tree[node].rmx = max(Tree[node<<1|1].rmx,Tree[node<<1|1].sum + Tree[node<<1].rmx);
    Tree[node].sum = Tree[node<<1].sum + Tree[node<<1|1].sum; 
}
int n,m,l,r;
nd query(int node,int left,int right)
{
    if(l<=left&&right<=r)
        return Tree[node];
    int mid = (left + right) >> 1;
    if(r<=mid)
        return query(node<<1,left,mid);//全在左范围区间
    if(l>mid)
        return query(node<<1|1,mid+1,right);
    //(important) 和求区间和的板子有所不同,因为可能存在1 ~ 7这种线段树中本身不存在的node,因此需要
    //在左右区间都有的情况下分离出来,创造新节点并返回
    //左右区间都有 
    nd lchild;  lchild.clear();
    lchild = query(node<<1,left,mid);
    nd rchild;  rchild.clear();
    rchild = query(node<<1|1,mid+1,right);
    nd parent;  parent.clear();
    parent.mx = max(lchild.mx,rchild.mx);
    parent.mx = max(parent.mx,lchild.rmx+rchild.lmx);
    parent.lmx = max(lchild.lmx,lchild.sum + rchild.lmx);
    parent.rmx = max(rchild.rmx,rchild.sum + lchild.rmx);
    parent.sum = lchild.sum + rchild.sum;
    return parent;
}
int main()
{
    read(n);
    build_Tree(1,1,n);
    read(m);
    for(int i=0;i!=m;++i)
    {
        read(l);
        read(r);
        i64 answer = query(1,1,n).mx;
        out(answer);
    }
}

  

你可能感兴趣的:(线段树整理)