2019 ICPC 南昌网络赛I:Yukino With Subinterval(CDQ分治)

Yukino With Subinterval

Yukino has an array a_1, a_2 \cdots a_na1,a2⋯*a**n*. As a tsundere girl, Yukino is fond of studying subinterval.

Today, she gives you four integers l, r, x, yl,r,x,y, and she is looking for how many different subintervals [L, R][L,R] are in the interval [l, r][l,r] that meet the following restraints:

  1. a_L =a_{L+1} =\cdots=a_RaL=aL+1=⋯=aR, and for any i \in [L,R], x \le a_i \le yi∈[L,R],xaiy.
  2. The length of such a subinterval should be maximum under the first restraint.

Note that two subintervals [L_1,R_1] , [L_2,R_2][L1,R1],[L2,R2]are different if and only if at least one of the following formulas is true:

  1. L1 \cancel= L2L1=L2
  2. R1 \cancel= R2R1=R2

Yukino, at the same time, likes making tricks. She will choose two integers pos,vpos,v, and she will change a_{pos}*apo**s* to vv.

Now, you need to handle the following types of queries:

  • 11 pos  vpos v: change a_{pos}*apo**s* to vv
  • 22 l  r  x  yl r x y: print the number of legal subintervals in the interval [l, r][l,r]

Input

The first line of the input contains two integers n, m (1 \le n, m \le 2 \times 10^5)n,m(1≤n,m≤2×105) – the numbers of the array and the numbers of queries respectively.

The second line of the input contains nn integers a_i (1 \le a_i \le n)ai(1≤ain).

For the next mm line, each containing a query in one of the following queries:

  • 11 pospos vv (1 \le pos, v \le n)(1≤pos,vn): change a_{pos}*apo**s* to vv
  • 22 l  r  x  yl r x y (1 \le l \le r \le n) (1 \le x \le y \le n)(1≤lrn)(1≤xyn): print the number of legal subintervals in the interval [l,r][l,r]

Output

For each query of the second type, you should output the number of legal subintervals in the interval [l, r][l,r].

样例输入复制

6 3 
3 3 1 5 6 5 
2 2 3 4 5 
1 3 2 
2 1 6 1 5

样例输出复制

0
4

样例解释

For the first operations, there are 33 different subintervals ([2, 2],[3, 3],[2,3])([2,2],[3,3],[2,3]) in the interval [2, 3][2,3], but none of them meets all the restraints.

For the third operations, the legal subintervals in interval [1, 6][1,6] are: [1, 2], [3, 3], [4, 4], [6, 6][1,2],[3,3],[4,4],[6,6]

Notes that although subintervals [1,1][1,1] and [2,2][2,2] also meet the first restraint, we can extend them to subinterval [1, 2][1,2]. So the length of them is not long enough, which against the second one.

题目链接:https://nanti.jisuanke.com/t/41356

题意:

给你一个含有n个数的数组,和m个操作

操作1:

将a[pos] 变为val

操作2:

询问在\([l,r]\) 中有多少个子区间满足数值在$[x,y] $ 之间 ,每一个子区间是长度尽可能大的相同数字。

思路:

将数组中 $a[i] $ ,转为在二维坐标平面上的点\((i,a[i])\) ,

那么就转为了一个带修改的二维平面中询问矩阵内点权值和的问题。

这是一个经典的三维偏序问题。

可以用CDQ分治来解决。

不会的话可以先学习一下这题:

https://www.cnblogs.com/qieqiemin/p/11613573.html

本题还需要注意几点:

因为连续相同的数值只贡献一个,所以我们把连续相同的只把第一个点放入平面中(即放入cdq的离线操作中)

那么对于每一个询问,我们就要特判一下\((l,a[l])\) 这个点,如果\(a[l]\)\([x,y]\) 之间,并且 满足

$l >1 $

$a[l]==a[l-1] $

这2个条件,都需要对这个询问的答案加上1。即加上a[l]为开头的子区间的贡献,

以及修改操作,需要判断改变\(a[i]\)\(a[i-1],a[i+1]\) 的影响,以及如果更改前的\(a[i]\) 是一个子区间的开头,需要去掉原来的影响(加上相反的值即可。)

代码:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i
#define pll pair
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<>= 1;} return ans;}
void Pv(const vector &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}

inline void getInt(int *p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/

ll tree[maxn];
int lowbit(int x)
{
    return -x & x;
}
ll ask(int x)
{
//    cout<> 1;
    cdq(l, mid);
    cdq(mid + 1, r);
    int ql = l;
    int qr = mid + 1;
    repd(i, l, r) {
        if (qr > r || (ql <= mid && a[ql] <= a[qr])) {
            if (a[ql].op == 1) {
                add(a[ql].y, a[ql].val);
                sym[i] = 1;
            }
            b[i] = a[ql++];
        } else {
            if (a[qr].op == 2) {
                ans[a[qr].ansid] += a[qr].val * ask(a[qr].y);
            }
            b[i] = a[qr++];
        }
    }
    ql = l;
    qr = mid + 1;
    repd(i, l, r) {if (qr > r || (ql <= mid && a[ql] <= a[qr])) {if (a[ql].op == 1) {add(a[ql].y, -a[ql].val);} ql++;} else {qr++;}}
    repd(i, l, r) {a[i] = b[i];}
}

int main()
{
    //freopen("D:\\code\\text\\input.txt","r",stdin);
    //freopen("D:\\code\\text\\output.txt","w",stdout);
    du2(n, m);
    repd(i, 1, n) {
        du1(c[i]);
        if (c[i] != c[i - 1]) {
            a[++tot] = node(-1, 1, i, c[i], 1, 0);
        }
    }
    // node(int tt, int oo, int xx, int yy, int vv, int aa)
    repd(i, 1, m) {
        int op;
        du1(op);
        if (op == 1) {
            int pos, v;
            du2(pos, v);
            if (pos != n && c[pos] == c[pos + 1]) {
                a[++tot] = node(i, 1, pos + 1, c[pos + 1], 1, 0);
            }
            if (pos == 1 || c[pos] != c[pos - 1]) {
                a[++tot] = node(i, 1, pos, c[pos], -1, 0);
            }
            c[pos] = v;
            if (pos != n && c[pos] == c[pos + 1]) {
                a[++tot] = node(i, 1, pos + 1, c[pos + 1], -1, 0);
            }
            if (pos == 1 || c[pos] != c[pos - 1]) {
                a[++tot] = node(i, 1, pos, c[pos], 1, 0);
            }
        } else {
            int l, r, x, y;
            du2(l, r);
            du2(x, y);
            if (l != 1 && c[l] == c[l - 1] && c[l] <= y && c[l] >= x) {
                ans[anstot]++;
            }
            a[++tot] = node(i, 2, r, y, 1, anstot);
            a[++tot] = node(i, 2, l - 1, x - 1, 1, anstot);
            a[++tot] = node(i, 2, r, x - 1, -1, anstot);
            a[++tot] = node(i, 2, l - 1, y, -1, anstot++);
        }
    }
    sort(a + 1, a + 1 + tot);
    cdq(1, tot);
    repd(i, 0, anstot - 1) {
        printf("%d\n", max(ans[i], 0));
    }
    return 0;
}

inline void getInt(int *p)
{
    char ch;
    do {
        ch = getchar();
    } while (ch == ' ' || ch == '\n');
    if (ch == '-') {
        *p = -(getchar() - '0');
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 - ch + '0';
        }
    } else {
        *p = ch - '0';
        while ((ch = getchar()) >= '0' && ch <= '9') {
            *p = *p * 10 + ch - '0';
        }
    }
}



你可能感兴趣的:(2019 ICPC 南昌网络赛I:Yukino With Subinterval(CDQ分治))