[CSP-S模拟测试]:Permutation(线段树+拓扑排序+贪心)

题目描述

你有一个长度为$n$的排列$P$与一个正整数$K$
你可以进行如下操作若干次使得排列的字典序尽量小
对于两个满足$|i−j|\geqslant K$且$|P_i−P_j|=1$的下标$i$与$j$,交换$P_i$与$P_j$


输入格式

第一行包括两个正整数$n$与$K$
第二行包括$n$个正整数,第$i$个正整数表示$P_i$


输出格式

输出一个新排列表示答案
输出共$n$行,第$i$行表示$P_i$


样例

样例输入:

8 3
4 5 7 8 3 1 2 6

样例输出:

1
2
6
7
5
3
4
8


数据范围与提示

对于前$20\%$的数据满足$n\leqslant 6$
对于前$50\%$的数据满足$n\leqslant 2,000$
对于$100\%$的数据满足$n\leqslant 500,000$


题解

这是一道暴力有$90$分的题……

先来考虑如何换,我们每扫到一个位置,发现比它小$1$的在它右边距离大于$K$的位置就交换,不断的扫整个序列,直到无法交换为止,这时候肯定是最优的。

交换不大于$n$次,瓶颈就在于如何快速查询交换的位置。

首先,我们设$pos[i]$表示权值为$i$的数字在哪儿,即先当与权值与下标调换。

那么,我们另$P_i$的字典序最小也就是另$pos[i]$的字典序最小,则操作转化为:相邻元素且权值差$\geqslant K$可以交换。

接着,问题开始抽象化,我们考虑建图……

先来考虑暴力建边,如果$i$与后面的$j$相比,$abs(pos[i]-pos[j])

但是暴力建边显然无论是时间还是空间都会死掉(还是$90$分……)

那么我们靠有些边是无用的,即如果$A\rightarrow B$且$B\rightarrow C$,那么$A\rightarrow C$这条边就是无用的,但是显然我们现在的策略无法避免,考虑如何处理。

这种情况我们一般都考虑倒着做,因为$pos[i]$连向$(pos[i]-K,pos[i])\cup(pos[i],pos[i]+K)$,但是我们只需要分别连向两个区间内下标最小的那个,用线段树快速查询即可。

时间复杂度:$\Theta(n\log n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
struct rec{int nxt,to;}e[1000001];
int head[500001],cnt;
int n,K;
int tr[2000001];
int pos[500001],du[500001];
int ans[500001];
priority_queue,greater > q;
void add(int x,int y)
{
	e[++cnt].nxt=head[x];
	e[cnt].to=y;
	head[x]=cnt;
}
void pushup(int x){tr[x]=min(tr[L(x)],tr[R(x)]);}
void insert(int x,int l,int r,int k,int w)
{
	if(l==r){tr[x]=w;return;}
	int mid=(l+r)>>1;
	if(k<=mid)insert(L(x),l,mid,k,w);
	else insert(R(x),mid+1,r,k,w);
	pushup(x);
}
int ask(int x,int l,int r,int L,int R)
{
	if(r>1;
	return min(ask(L(x),l,mid,L,R),ask(R(x),mid+1,r,L,R));
}
int main()
{
	scanf("%d%d",&n,&K);
	memset(tr,0x3f,sizeof(tr));
	for(int i=1;i<=n;i++){int a;scanf("%d",&a);pos[a]=i;}
	for(int i=n;i;i--)
	{
		int x;
		x=ask(1,1,n,pos[i]+1,min(pos[i]+K-1,n));
		if(x!=0x3f3f3f3f){add(pos[i],pos[x]);du[pos[x]]++;}
		x=ask(1,1,n,max(1,pos[i]-K+1),pos[i]-1);
		if(x!=0x3f3f3f3f){add(pos[i],pos[x]);du[pos[x]]++;}
		insert(1,1,n,pos[i],i);
	}
	int now=0;
	for(int i=1;i<=n;i++)
		if(!du[i])q.push(i);
	while(!q.empty())
	{
		int x=q.top();q.pop();
		ans[x]=++now;
		for(int i=head[x];i;i=e[i].nxt)
			if(!(--du[e[i].to]))q.push(e[i].to);
	}
	for(int i=1;i<=n;i++)printf("%d\n",ans[i]);
	return 0;
}

rp++

你可能感兴趣的:([CSP-S模拟测试]:Permutation(线段树+拓扑排序+贪心))