- 2025年上半年软考系统架构设计师--案例分析试题与答案
不对法
计算机软考机考系统架构
必选题一:大模型训练系统某公司开发一个在线大模型训练平台,支持Python代码编写、模型训练和部署,用户通过python编写模型代码,将代码交给系统进行模型代码的解析,最终由系统匹配相应的计算机资源进行输出,用户不需要关心底层硬件平台。a.系统发生错误时,不影响正常运行时发送一个消息给系统管理员(可靠性。ps:可靠性中包括了健壮性:指的是保护应用程序不受错误使用和错误输入的影响,在发生意外错误事件
- AI 技术&AI开发框架
34号树洞
人工智能深度学习人工智能机器学习NLPGAI
目录一、AI技术及其开发框架1.AI技术分类与代表方向2.主流AI开发框架3.AI应用开发流程简述4.补充:基础依赖与生态二、AI技术方向1.机器学习(MachineLearning,ML)✦核心概念:✦关键方法:✦应用案例:2.深度学习(DeepLearning,DL)✦核心概念:✦网络结构举例:✦技术趋势:3.自然语言处理(NLP)✦核心任务:✦代表模型:4.计算机视觉(ComputerVis
- Dify实现图文混排的智能问答实践
一望无际的大草原
Dify高级应用工作总结Agent数据分析agent智能客服
最近在做类似于各大平台中广泛应用的智能客服,相当于基于各平台的用户操作手册,业务流程场景等文档资料,开发一个类似于智能客服的自动化问答应用。主要基于dify进行开发,但对数据有些特殊要求,之前大家做的都是基于文本的,结合大模型返回的结果主要也是文本信息,这种方式不够直观全面,也有信息丢失,同时,一般这些资料中都包含了大量的图文结合内容,很多问题的答复需要结合图像进行答复更加直观,因此对其进行简单的
- Qt 各种功能学习笔记
栈不收
qt学习笔记
目录1.Qt关于数据库1.1Qt链接数据库1.2将数据库的模型显示在控件中2.Qt关于控件2.1用正则表达式设置输入框只能输入正浮点数2.2设置QDateTimeEdit的时间格式和设置为当前时间1.Qt关于数据库1.1Qt链接数据库基础教学:使用Qt链接MySql数据库_qt连接mysql_栈不收的博客-CSDN博客需要注意的问题:在链接MySQL的时候,首先要确保MySQL已经安装成功在目录Q
- 机器学习算法——神经网络1(神经元模型)
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络中最基本的成分是神经元(neuron)模型。即上述定义中的“简单单元”。在生物神经网络中,每个神经元与其他申请元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经
- 生信技能16 - 生信分析序列处理常用函数
生信与基因组学
生信分析项目实战技能合集pythonnumpy数据分析
生信分析序列处理常用函数生信分析经常需要对序列进行处理,下面的实现代码可用于个人练习,可以让我们更好地理解序列处理的原理,当然python也有更高效率的包可以实现以下功能。read_seq_file读取序列txt文件函数count_nucletotides计算各核苷酸数量函数dna2rnaDNA序列转RNA序列函数seq_reverseDNA序列转换为互补序列函数count_GC_ratio计算序
- 半导体器件仿真:功率器件仿真_(12).器件仿真与实验数据对比
kkchenkx
信号仿真2信号处理信息可视化人工智能
器件仿真与实验数据对比在半导体器件仿真中,将仿真结果与实验数据进行对比是验证仿真模型准确性的重要步骤。这一过程不仅能够帮助我们理解仿真模型的优缺点,还可以为后续的设计优化提供指导。本节将详细讨论如何进行器件仿真与实验数据的对比,包括数据处理、对比方法和误差分析。数据处理实验数据的预处理在进行器件仿真与实验数据对比之前,首先需要对实验数据进行预处理。实验数据通常包含多个测量点,这些测量点可能受到噪声
- 半导体器件仿真:光电器件仿真_(6).光电二极管仿真
kkchenkx
信号仿真2信号处理信息可视化
光电二极管仿真1.引言光电二极管是一种能够将光能转换为电能的半导体器件。在光通信、图像传感器、光检测器和太阳能电池等领域有广泛的应用。光电二极管的仿真可以帮助设计者了解器件的工作原理、性能参数以及优化设计。本节将详细介绍光电二极管的仿真原理和步骤,包括器件结构、物理模型、仿真软件的使用方法以及具体的仿真案例。2.光电二极管的基本结构和工作原理2.1器件结构光电二极管通常由一个PN结或PIN结组成。
- AI框架之Spring AI与Spring Cloud Alibaba AI使用讲解
web13688565871
面试学习路线阿里巴巴人工智能springjava
文章目录1AI框架1.1SpringAI简介1.2SpringAI使用1.2.1pom.xml1.2.2可实现的功能1.3SpringCloudAlibabaAI1.4SpringCloudAlibabaAI实践操作1.4.1pom.xml1.4.2配置文件1.4.3对接文本模型1.4.4文生图模型1.4.5语音合成模型1AI框架1.1SpringAI简介在软件开发的世界中,Java一直是企业级应
- YOLOv13:开启目标检测新时代,手把手教你实操
奔跑吧邓邓子
必备核心技能YOLO目标检测目标跟踪人工智能实操
目录一、YOLOv13初印象1.1YOLO系列发展脉络1.2YOLOv13独特之处二、前期准备工作2.1环境搭建2.2依赖安装三、深入使用指南3.1模型验证3.2模型训练3.3模型推理四、应用案例与拓展4.1实际场景应用展示4.2与其他技术结合思路五、总结与展望一、YOLOv13初印象1.1YOLO系列发展脉络YOLO(YouOnlyLookOnce)系列算法在目标检测领域中,就如同一位不断进化的
- 从入门到实战:YOLOv13 安装与使用全攻略
奔跑吧邓邓子
必备核心技能YOLO目标跟踪人工智能安装使用全攻略
目录一、YOLOv13简介1.1目标检测与YOLO系列1.2YOLOv13核心技术亮点1.3性能优势展现二、前期准备2.1系统环境要求2.2软件依赖安装三、安装流程3.1获取源码3.2环境搭建3.3安装验证四、使用指南4.1模型验证4.2模型训练4.3模型推理4.4模型导出五、应用案例与技巧5.1实际应用场景展示5.2常见问题与解决方法5.3优化技巧分享六、总结与展望6.1YOLOv13回顾6.2
- rnn-人名案例实现
Ai玩家hly
rnnpython深度学习
模型训练实现:coding:utf-8导入torch工具importjsonimporttorch导入nn准备构建模型importtorch.nnasnnimporttorch.nn.functionalasFimporttorch.optimasoptim导入torch的数据源数据迭代器工具包fromtorch.utils.dataimportDataset,DataLoader用于获得常见字母
- 4-AI-业务与MCP协议结合-MCPServer实战
小沛9
人工智能javaAI编程
一、介绍本章节会开发一个简单的MCP的服务。目前的步骤是先开发一个简单的MCP的SSE模式的server集成到大模型中。后面会演示stdio模式。注册到Nacos中(重点探索模式)、将HTTP接口配置成MCP的server。大概会从这几个方面进行演示。二、Server代码展示1、POM文件org.springframework.bootspring-boot-starter-actuatororg
- 人名分类器(RNN案例)
Turbo_O.
rnn深度学习人工智能
案例介绍:人名分类案例是多分类问题,根据人名预测属于哪个国家人名->x,国家->y监督学习,历史数据中已知y案例步骤:1.数据预处理获取常用字符以及国家类别#导入torch工具fromcProfileimportlabelimporttorch#导入nn准备构建模型importtorch.nnasnnimporttorch.optimasoptimfromjax.experimental.rnni
- 【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
论文推荐深度学习学习架构人工智能机器学习
【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图3】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构引言欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要求需要参加学术会议,发
- 【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
论文推荐深度学习学习架构人工智能
【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图4】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构数据与方法2.1数据欢迎铁子们点赞、关注、收藏!祝大家逢考必过!逢投必中!上岸上岸上岸!upupup大多数高校硕博生毕业要求需要
- 【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构
努力毕业的小土博^_^
优秀论文推荐深度学习学习人工智能
【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构文章目录【深度学习|冰川制图5】GlacierNet2:一种面向高山冰川制图的混合多模型学习架构数据与方法2.2深度学习模型2.2.1GlacierNet模型2.2.2DeepLabV3+模型欢迎铁子们点赞、关注、收藏!祝大
- 加快Dlib人脸检测速度
weixin_46019223
opencv人脸识别视频处理机器学习
加快Dlib人脸检测速度前言一、让电脑以最大运行效率运行二、开启Dlib自带的加速三、彩色图像转灰度图像四、其它的坑总结前言使用dlib人脸检测接口detector()速度过慢,导致视频只有1帧所以找了一些方法,并解决了一些问题将视频帧数提升到了十几帧。一、让电脑以最大运行效率运行之前笔记本电脑,都是没插电源运行得,插了之后视频变成了两帧(-_-||),但是可以查看电脑电源设置,查看cup是否全速
- Python dlib(HOG+SVM)人脸识别总结
程序媛一枚~
人脸识别python支持向量机开发语言读书笔记人脸检测识别
Pythondlib(HOG+SVM)人脸识别总结面部标志检测dlib68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测ear眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐眼睛连线反正切获取旋转角度,期望图像眼睛横长度计算比率左眼计算右眼相对坐标眼睛横中心点作为
- 基于大模型的急性结石性胆囊炎全流程预测与干预系统技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能机器学习深度学习方案大纲
目录一、引言二、术前阶段(一)疾病预测与诊断辅助(二)手术风险评估(三)手术方案制定辅助三、术中阶段(一)实时监测与风险预警(二)手术决策支持四、术后阶段(一)并发症风险预测(二)术后护理计划制定五、麻醉方案定制与优化(一)术前麻醉风险评估(二)术中麻醉管理六、统计分析与模型优化(一)数据收集与整理(二)模型性能评估(三)模型优化与更新七、实验验证与证据支持(一)回顾性队列研究(二)前瞻性随机对照
- 【Rust + Actix Web】现代后端开发:从零构建高并发 Web 应用
LCG元
前端rust前端开发语言
目录项目概述环境准备项目创建与依赖配置系统架构设计核心代码实现1.数据库模型(`src/models.rs`)2.应用状态管理(`src/state.rs`)3.核心业务逻辑(`src/handlers.rs`)4.主应用入口(`src/main.rs`)高并发优化策略1.异步处理模型2.连接池配置优化3.缓存策略设计性能测试结果部署方案Docker部署配置(`Dockerfile`)Kubern
- 数字人多模态交互中的语义理解技术:让虚拟角色真正“理解”用户
CarlowZJ
数字人python
目录前言一、语义理解技术的概念(一)语义理解的定义(二)语义理解的关键技术二、语义理解的代码示例(一)安装依赖(二)语义理解模型(三)结合情感分析(四)完整的多模态语义理解系统三、应用场景(一)虚拟客服(二)教育辅导(三)虚拟直播(四)智能助手四、注意事项(一)上下文管理(二)情感分析(三)多模态融合(四)模型选择(五)性能优化(六)安全性和隐私保护五、总结前言在数字人多模态交互中,语义理解是实现
- 当语言模型”思考”时,它真的在推理吗?
qq_502428990
语言模型人工智能自然语言处理
最近,每当我看到ChatGPT一步步”推导”数学题,或是Claude条理分明地分析哲学问题时,总忍不住想起图灵测试那个古老的命题:我们是否又一次被表象迷惑了?这些看似严谨的推理过程,到底是一场精妙的模仿秀,还是真正智能的曙光?1.被误解的”思考者”走进任何科技论坛,你都能看到人们对GPT-4解题过程的惊叹:”看这一步一步的推导,它简直像人类一样在思考!”但作为一个长期观察语言模型的研究者,我不得不
- 鸿蒙HarmonyOS EventHub模块
yj235532
鸿蒙harmonyos鸿蒙开发移动开发harmonyos鸿蒙鸿蒙开发UI组件化
一、引言EventHub模块在HarmonyOS应用开发中扮演着重要角色,它提供了事件中心的功能,包括事件订阅、取消订阅以及触发事件等操作,为应用内的模块间通信提供了有效的机制。二、模块基本信息接口支持版本:首批接口从APIversion9开始支持,后续版本的新增接口采用上角标单独标记起始版本。适用模型:本模块接口仅可在Stage模型下使用。三、导入模块在使用EventHub功能前,需导入相关模块
- 大模型本地部署,拥有属于自己的ChatGpt
小妖同学学AI
chatgpt
ChatGpt以其强大的信息整合和对话能力惊艳了全球,在自然语言处理上面表现出了惊人的能力。不管用于文案撰写还是程序辅助开发都大大提高了我们的工作效率,但是其使用有一定的门槛,让我们大多数人都望而却步,今天我们利用ollama实现本地大模型的步骤,让我们轻松拥有自己的人工智能。Ollama作为一个轻量级的工具,可以帮助用户在本地运行这些大型语言模型,无需持续依赖云服务,既保护了数据隐私,又能减少网
- 事件循环(Event Loop)机制对比:Node.js vs 浏览器
1.共同点:基本事件循环模型两者都基于"任务队列+循环处理"的机制:主线程执行同步代码。异步任务(如I/O、定时器)完成后,回调函数被放入任务队列。事件循环不断检查队列,按规则取出任务执行。2.核心区别(1)任务队列类型不同浏览器Node.js宏任务(Macrotask):•script(整体代码)•setTimeout/setInterval•DOM事件回调(如点击)•requestAnimat
- 技术开发全流程管理:涵盖天线系统的仿真建模(HFSS/CST等)、原型设计、调试优化(网络分析仪/暗室测试)到量产导入(LDS工艺识别),需主导技术文档编写(设计规范/测试报告)。
百态老人
网络设计规范
以下是针对天线系统技术开发全流程管理的完整解析,涵盖仿真建模、原型设计、调试优化、量产导入及技术文档编写五大环节,结合行业实践与资料核心信息进行系统阐述:一、仿真建模(HFSS/CST)1.软件选择与算法差异HFSS:基于有限元法(FEM),擅长电小尺寸、窄带天线设计(如微带天线、滤波电路),可精确计算辐射方向图、增益、S参数等。其自适应网格技术确保高精度,但计算资源消耗大,不适于电大尺寸模型。C
- 使用 Xinference 命令行工具(xinference launch)部署 Nanonets-OCR-s
没刮胡子
Linux服务器技术人工智能AI软件开发技术实战专栏ocr
使用Xinference命令行工具(xinferencelaunch)部署Nanonets-OCR-s一、核心优势与适用场景通过xinferencelaunch命令可直接在命令行完成模型部署,无需编写Python代码,适合快速验证或生产环境批量部署。二、部署步骤:从命令行启动模型1.确认环境与依赖已安装Xinference:pipinstall"xinference[all]"GPU显存≥9GB(
- Spring AI 结合 MCP MySQL 实现对话式数据库查询
没刮胡子
软件开发技术实战专栏人工智能AISpring数据库spring人工智能spring-aimcp-servermysql
在现代应用开发中,将人工智能与数据库查询结合可以创造更自然、更智能的用户交互方式。下面我将详细介绍如何使用SpringAI框架结合MCP(可能指MySQL连接池或相关组件)实现对话中的数据库查询功能。什么是SpringAI和MCPMySQLSpringAI框架概述SpringAI是基于Spring生态的人工智能集成框架,它提供了:与大型语言模型(LLM)的集成能力对话管理和自然语言处理功能业务逻辑
- AingDesk开源免费的本地 AI 模型管理工具(搭建和调用MCP)
没刮胡子
Linux服务器技术软件开发技术实战专栏人工智能AI开源人工智能AI助手mcpsse知识库智能体
说明AingDesk是一款开源免费的本地AI模型管理工具,旨在简化AI模型部署流程并提升用户体验。AingDesk支持本地AI模型及API+知识库搭建。支持知识库、模型API、分享、联网搜索、智能体。✨产品亮点跨平台支持客户端支持Windows、macOS,服务端可通过Docker部署高效下载与网络优化自动选择最优下载线路,支持断点续传,提升大模型部署速度兼容OpenAIAPI格式,方便第三方模型
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR