python爬虫及案例详解(附代码)

安装三大库
1、requests
2、BeautifulSoup
3、lxml
有的网站做了相应的反爬虫,不能用普通方法爬取网站数据。
这里我用python爬取了几个网站的数据,分别存入csv文件,mysql数据库,并用简单工具对数据进行了分析和可视化。具体代码和详解请参考
代码下载
有帮助到您,记得给颗

一、爬取糗事百科数据(pachong.py)

1、用python爬取糗事百科的用户地址,并且解析出地址的经纬度,在地图上通过热力图绘制出来
2、把数据保存到excel表中,再用BDP绘制出热力图

python爬虫及案例详解(附代码)_第1张图片
2C377268-40D3-440F-9B6F-8766F5E20577.png

二、多进程快速爬取豆瓣电影250数据数据(multipelPrcessCrawer.py)

1、导入Pool进程池,开四个进程爬取豆瓣电影排行信息

2、存入mysql数据库中

三、lxml爬取小说数据(lxml-scrawer.py)

四、爬取《斗破苍穹》小说原文(doupo.py)

1、爬取《斗破苍穹》小说所有章节的内容

五、jieba统计词频(jiebatest.py)

1、导入jieba包,统计《斗破苍穹》词频

2、用wordart可视化


python爬虫及案例详解(附代码)_第2张图片
image.png

python爬虫及案例详解(附代码)_第3张图片
B763170B-93E1-4F1C-A248-77EEBFAA1BB2.png

https://www.cnblogs.com/sss4/p/7809821.html


import requests
from bs4 import BeautifulSoup
res = requests.get("http://xa.xiaozhu.com/")
soup = BeautifulSoup(res.text,'html.parser')
prices = soup.select('#page_list > ul > li:nth-of-type(7) > div.result_btm_con.lodgeunitname > span.result_price > i')
for price in prices:
    print(price)

输出本页所有的价格
page_list > ul > li > div.result_btm_con.lodgeunitname > span.result_price > i

酷狗排行榜top500数据爬取

import requests
from bs4 import BeautifulSoup
res = requests.get("http://xa.xiaozhu.com/")
soup = BeautifulSoup(res.text,'html.parser')
prices = soup.select('#page_list > ul > li > div.result_btm_con.lodgeunitname > span.result_price > i')
for price in prices:
print(price.get_text())

import requests
from bs4 import BeautifulSoup
import time

def get_info(url):
    wb_data = requests.get(url)
    soup = BeautifulSoup(wb_data.text, 'lxml')
    ranks = soup.select('span.pc_temp_num')
    titles = soup.select('div.pc_temp_songlist > ul > li > a')
    times = soup.select('span.pc_temp_tips_r > span')
    for rank,title,time in zip(ranks,titles,times):
        data = {
            'rank':rank.get_text().strip(),
            'singer':title.get_text().split('-')[0],
            'song':title.get_text().split('-')[1],
            'time':time.get_text().strip()
        }
        print(data)
if __name__ =='__main__':
    urls = ['http://www.kugou.com/yy/rank/home/{}-8888.html'.format(str(i)) for i in range(1,24)]
    for url in urls:
        get_info(url)
    time.sleep(1)

爬取小说内容保存到txt文件

import requests
import re
import time
f = open('/Users/jalynnxi/Desktop/doupo.txt','a+')
def get_info(url):
    res = requests.get(url)
    if res.status_code == 200:
        contents = re.findall('

(.*?)

',res.content.decode('utf-8'),re.S) for content in contents: f.write(content+'\n') else: pass if __name__ =='__main__': urls = ['http://m.doupoxs.com/doupocangqiong/{}.html'.format(str(i)) for i in range(1,1624)] for url in urls: get_info(url) time.sleep(1) f.close()

爬取糗事百科的用户信息

import requests
import re
import time
info_lists = []
def judgment_sex(class_name):
    if class_name == 'womenIcon':
        return '女'
    else:
        return '男'
def get_info(url):
    res = requests.get(url)
    ids = re.findall('

(.*?)

',res.text,re.S) levels = re.findall('
(.*?)
',res.text,re.S) sexs = re.findall('
.*?(.*?)', res.text,re.S) laughs = re.findall('(\d+)',res.text,re.S) comments = re.findall('(\d+) 评论',res.text,re.S) for id, level, sex, content,laugh,comment in zip(ids, levels, sexs, contents, laughs, comments): info = { 'id': id, 'level': level, 'sex': judgment_sex(sex), 'content': content, 'laugh': laugh, 'comment': comment } info_lists.append(info) print (info) if __name__ == '__main__': urls = ['https://www.qiushibaike.com/8hr/page/{}/'.format(str(i)) for i in range(1,10)] for url in urls: get_info(url) for info_list in info_lists: f = open('/Users/jalynnxi/Desktop/qiushi.txt', 'a+') try: f.write(info_list['id']+'\n') f.write(info_list['level'] + '\n') f.write(info_list['sex'] + '\n') f.write(info_list['content'] + '\n') f.write(info_list['laugh'] + '\n') f.write(info_list['comment'] + '\n') f.close() except UnicodeEncodeError: pass

把数据写如excel

import xlwt
book = xlwt.Workbook(encoding='utf-8')
sheet = book.add_sheet('Sheet1')
sheet.write(0,0,'python')
book.save('test.xls')

爬取书名、作者、分类等信息存入excel

import xlwt
import requests
from lxml import etree
import time

all_info_list = []


def get_info(url):
    html = requests.get(url)
    selector = etree.HTML(html.text)
    infos = selector.xpath('//ul[@class="all-img-list cf"]/li')
    # infos = selector.xpath('/html/body/div[2]/div[5]/div[2]/div[2]/div/ul/li[1]')
    # print (infos)
    # '/html/body/div[2]/div[5]/div[2]/div[2]/div/ul/li[1]'
    for info in infos:
        title = info.xpath('div[2]/h4/a/text()')[0]
        author = info.xpath('div[2]/p[1]/a[1]/text()')[0]
        style_1 = info.xpath('div[2]/p[1]/a[2]/text()')[0]
        style_2 = info.xpath('div[2]/p[1]/a[3]/text()')[0]
        style = style_1 + '.' + style_2
        complete = info.xpath('div[2]/p[1]/span/text()')[0]
        introduce = info.xpath('div[2]/p[2]/text()')[0]
        word = info.xpath('div[2]/p[3]/span/text()')[0]
        info_list = [title, author, style, complete, introduce, word]
        all_info_list.append(info_list)


if __name__ == '__main__':
    urls = ['https://www.qidian.com/all?page={}'.format(str(i)) for i in range(1,3)]
    for url in urls:
        get_info(url)
    header = ['title', 'author', 'style', 'complete', 'introduce', 'word']
    book = xlwt.Workbook(encoding='utf-8')
    sheet = book.add_sheet('Sheet1')
    for h in range(len(header)):
        sheet.write(0, h, header[h])
    i = 1
    for list1 in all_info_list:
        j = 0
        for data in list1:
            sheet.write(i, j, data)
            j += 1
        i += 1
book.save('xiaoshuo.xls')

你可能感兴趣的:(python爬虫及案例详解(附代码))