渣翻marshmallow文档


marshmallow

marshmallow是一个用来将复杂的orm对象与python原生数据类型之间相互转换的库,简而言之,就是实现object -> dictobjects -> liststring -> dictstring -> list

要用到marshmallow,首先需要一个用于序列化和反序列化的类:

import datetime as dt

class User(object):
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_at = dt.datetime.now()

    def __repr__(self):
        return ''.format(self=self)

Schema

要对一个类或者一个json数据实现相互转换(即序列化和反序列化,序列化的意思是将数据转化为可存储或可传输的数据类型),需要一个中间载体,这个载体就是Schema。除了转换以外,Schema还可以用来做数据校验。每个需要转换的类,都需要一个对应的Schema:

from marshmallow import Schema, fields

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

Serializing(序列化)

序列化使用schema中的dump()dumps()方法,其中,dump() 方法实现obj -> dictdumps()方法实现 obj -> string,由于Flask能直接序列化dict(使用jsonify),而且你肯定还会对dict进一步处理,没必要现在转化成string,所以通常Flask与Marshmallow配合序列化时,用 dump()方法即可:

from marshmallow import pprint

user = User(name="Monty", email="[email protected]")
schema = UserSchema()
result = schema.dump(user)
pprint(result.data)
# {"name": "Monty",
#  "email": "[email protected]",
#  "created_at": "2014-08-17T14:54:16.049594+00:00"}

过滤输出

当然你不需要每次都输出对象中所有字段,可以使用only参数来指定你需要输出的字段,这个在实际场景中很常见:

summary_schema = UserSchema(only=('name', 'email'))
summary_schema.dump(user).data
# {"name": "Monty Python", "email": "[email protected]"}

你也可以使用exclude字段来排除你不想输出的字段。

Deserializing(反序列化)

相对dump()的方法就是load()了,可以将字典等类型转换成应用层的数据结构,即orm对象:

from pprint import pprint

user_data = {
    'created_at': '2014-08-11T05:26:03.869245',
    'email': u'[email protected]',
    'name': u'Ken'
}
schema = UserSchema()
result = schema.load(user_data)
pprint(result.data)
# {'name': 'Ken',
#  'email': '[email protected]',
#  'created_at': datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)},

对反序列化而言,将传入的dict变成object更加有意义。在Marshmallow中,dict -> object的方法需要自己实现,然后在该方法前面加上一个decoration:post_load即可,即:

from marshmallow import Schema, fields, post_load

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

    @post_load
    def make_user(self, data):
        return User(**data)

这样每次调用load()方法时,会按照make_user的逻辑,返回一个User类对象:

user_data = {
    'name': 'Ronnie',
    'email': '[email protected]'
}
schema = UserSchema()
result = schema.load(user_data)
result.data  # => 

tips: 相对于dumps(),也存在loads()方法,用于string -> object,有些简单场景可以用。

Objects <-> List

上面的序列化和反序列化,是针对一个object而言的,对于objects的处理,只需在schema中增加一个参数:many=True,即:

user1 = User(name="Mick", email="[email protected]")
user2 = User(name="Keith", email="[email protected]")
users = [user1, user2]

# option 1:
schema = UserSchema(many=True)
result = schema.dump(users)

# Option 2:
schema = UserSchema()
result = schema.dump(users, many=True)
result.data

# [{'name': u'Mick',
#   'email': u'[email protected]',
#   'created_at': '2014-08-17T14:58:57.600623+00:00'}
#  {'name': u'Keith',
#   'email': u'[email protected]',
#   'created_at': '2014-08-17T14:58:57.600623+00:00'}]

Validation

Schema.load()loads()方法会在返回值中加入验证错误的dictionary,例如emailURL都有内建的验证器。

data, errors = UserSchema().load({'email': 'foo'})
errors  # => {'email': ['"foo" is not a valid email address.']}
# OR, equivalently
result = UserSchema().load({'email': 'foo'})
result.errors  # => {'email': ['"foo" is not a valid email address.']}

当验证一个集合时,返回的错误dictionary会以错误序号对应错误信息的key:value形式保存:

class BandMemberSchema(Schema):
    name = fields.String(required=True)
    email = fields.Email()

user_data = [
    {'email': '[email protected]', 'name': 'Mick'},
    {'email': 'invalid', 'name': 'Invalid'},  # invalid email
    {'email': '[email protected]', 'name': 'Keith'},
    {'email': '[email protected]'},  # missing "name"
]

result = BandMemberSchema(many=True).load(user_data)
result.errors
# {1: {'email': ['"invalid" is not a valid email address.']},
#  3: {'name': ['Missing data for required field.']}}

你可以向内建的field中传入validate 参数来定制验证的逻辑,validate的值可以是函数,匿名函数lambda,或者是定义了__call__的对象:

class ValidatedUserSchema(UserSchema):
    # NOTE: This is a contrived example.
    # You could use marshmallow.validate.Range instead of an anonymous function here
    age = fields.Number(validate=lambda n: 18 <= n <= 40)

in_data = {'name': 'Mick', 'email': '[email protected]', 'age': 71}
result = ValidatedUserSchema().load(in_data)
result.errors  # => {'age': ['Validator (71.0) is False']}

如果你传入的函数中定义了ValidationError,当它触发时,错误信息会得到保存:

from marshmallow import Schema, fields, ValidationError

def validate_quantity(n):
    if n < 0:
        raise ValidationError('Quantity must be greater than 0.')
    if n > 30:
        raise ValidationError('Quantity must not be greater than 30.')

class ItemSchema(Schema):
    quantity = fields.Integer(validate=validate_quantity)

in_data = {'quantity': 31}
result, errors = ItemSchema().load(in_data)
errors  # => {'quantity': ['Quantity must not be greater than 30.']}

注意:
如果你需要执行多个验证,你应该传入可调用的验证器的集合(list, tuple, generator)

注意2:
Schema.dump() 也会返回错误信息dictionary,也会包含序列化时的所有ValidationErrors。但是required, allow_none, validate, @validates, 和 @validates_schema 只用于反序列化,即Schema.load()

Field Validators as Methods

把生成器写成方法可以提供极大的便利。使用validates 装饰器就可以注册一个验证方法:

from marshmallow import fields, Schema, validates, ValidationError
class ItemSchema(Schema):
    quantity = fields.Integer()

    @validates('quantity')
    def validate_quantity(self, value):
        if value < 0:
            raise ValidationError('Quantity must be greater than 0.')
        if value > 30:
            raise ValidationError('Quantity must not be greater than 30.')

strict Mode

如果将strict=True传入Schema构造器或者classMeta参数里,则仅会在传入无效数据是报错。可以使用ValidationError.messages变量来获取验证错误的dictionary

Required Fields

你可以在field中传入required=True.当Schema.load()的输入缺少某个字段时错误会记录下来。
如果需要定制required fields的错误信息,可以传入一个error_messages参数,参数的值为以required为键的键值对。

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(
        required=True,
        error_messages={'required': 'Age is required.'}
    )
    city = fields.String(
        required=True,
        error_messages={'required': {'message': 'City required', 'code': 400}}
    )
    email = fields.Email()

data, errors = UserSchema().load({'email': '[email protected]'})
errors
# {'name': ['Missing data for required field.'],
#  'age': ['Age is required.'],
#  'city': {'message': 'City required', 'code': 400}}

Partial Loading

按照RESTful架构风格的要求,更新数据使用HTTP方法中的PUTPATCH方法,使用PUT方法时,需要把完整的数据全部传给服务器,使用PATCH方法时,只需把需要改动的部分数据传给服务器即可。因此,当使用PATCH方法时,由于之前设定的required,传入数据存在无法通过Marshmallow 数据校验的风险,为了避免这种情况,需要借助Partial Loading功能。

实现Partial Loadig只要在schema构造器中增加一个partial参数即可:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({'age': 42}, partial=('name',))
# OR UserSchema(partial=('name',)).load({'age': 42})
data, errors  # => ({'age': 42}, {})

Schema.validate

如果你只是想用Schema验证数据,而不生成对象,可以使用Schema.validate().

errors = UserSchema().validate({'name': 'Ronnie', 'email': 'invalid-email'})
errors  # {'email': ['"invalid-email" is not a valid email address.']}

Specifying Attribute Names

Schemas默认会编列传入对象和自身定义的fields相同的属性,然而你也会有需求使用不同的fields和属性名。在这种情况下,你需要明确定义这个fields将从什么属性名取值:

class UserSchema(Schema):
    name = fields.String()
    email_addr = fields.String(attribute="email")
    date_created = fields.DateTime(attribute="created_at")

user = User('Keith', email='[email protected]')
ser = UserSchema()
result, errors = ser.dump(user)
pprint(result)
# {'name': 'Keith',
#  'email_addr': '[email protected]',
#  'date_created': '2014-08-17T14:58:57.600623+00:00'}

Specifying Deserialization Keys

Schemas默认会反编列传入字典和输出字典中相同的字段名。如果你觉得数据不匹配你的schema,你可以传入load_from参数指定需要增加load的字段名(原字段名也能load,且优先load原字段名):

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email(load_from='emailAddress')

data = {
    'name': 'Mike',
    'emailAddress': '[email protected]'
}
s = UserSchema()
result, errors = s.load(data)
#{'name': u'Mike',
# 'email': '[email protected]'}   

Specifying Serialization Keys

如果你需要编列一个field成一个不同的名字时,可以使用dump_to,逻辑和load_from类似:

class UserSchema(Schema):
    name = fields.String(dump_to='TheName')
    email = fields.Email(load_from='CamelCasedEmail', dump_to='CamelCasedEmail')

data = {
    'name': 'Mike',
    'email': '[email protected]'
}
s = UserSchema()
result, errors = s.dump(data)
#{'TheName': u'Mike',
# 'CamelCasedEmail': '[email protected]'}

“Read-only” and “Write-only” Fields

可以指定某些字段只能够dump()load():

class UserSchema(Schema):
    name = fields.Str()
    # password is "write-only"
    password = fields.Str(load_only=True)
    # created_at is "read-only"
    created_at = fields.DateTime(dump_only=True)

Nesting Schemas

当你的模型含有外键,那这个外键的对象在Schemas如何定义。举个例子,Blog就具有User对象作为它的外键:


Use a Nested field to represent the relationship, passing in a nested schema class.
import datetime as dt

class User(object):
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_at = dt.datetime.now()
        self.friends = []
        self.employer = None

class Blog(object):
    def __init__(self, title, author):
        self.title = title
        self.author = author  # A User object

使用Nested field表示外键对象:

from marshmallow import Schema, fields, pprint

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email()
    created_at = fields.DateTime()

class BlogSchema(Schema):
    title = fields.String()
    author = fields.Nested(UserSchema)

这样序列化blog就会带上user信息了:

user = User(name="Monty", email="[email protected]")
blog = Blog(title="Something Completely Different", author=user)
result, errors = BlogSchema().dump(blog)
pprint(result)
# {'title': u'Something Completely Different',
# {'author': {'name': u'Monty',
#             'email': u'[email protected]',
#             'created_at': '2014-08-17T14:58:57.600623+00:00'}}

如果field 是多个对象的集合,定义时可以使用many参数:

collaborators = fields.Nested(UserSchema, many=True)

如果外键对象是自引用,则Nested里第一个参数为'self'

Specifying Which Fields to Nest

如果你想指定外键对象序列化后只保留它的几个字段,可以使用Only参数:

class BlogSchema2(Schema):
    title = fields.String()
    author = fields.Nested(UserSchema, only=["email"])

schema = BlogSchema2()
result, errors = schema.dump(blog)
pprint(result)
# {
#     'title': u'Something Completely Different',
#     'author': {'email': u'[email protected]'}
# }

如果需要选择外键对象的字段层次较多,可以使用"."操作符来指定:

class SiteSchema(Schema):
    blog = fields.Nested(BlogSchema2)

schema = SiteSchema(only=['blog.author.email'])
result, errors = schema.dump(site)
pprint(result)
# {
#     'blog': {
#         'author': {'email': u'[email protected]'}
#     }
# }

Note

如果你往Nested是多个对象的列表,传入only可以获得这列表的指定字段。

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email()
    friends = fields.Nested('self', only='name', many=True)
# ... create ``user`` ...
result, errors = UserSchema().dump(user)
pprint(result)
# {
#     "name": "Steve",
#     "email": "[email protected]",
#     "friends": ["Mike", "Joe"]
# }

这种情况,也可以使用exclude 去掉你不需要的字段。同样这里也可以使用"."操作符。

Two-way Nesting

如果有两个对象需要相互包含,可以指定Nested对象的类名字符串,而不需要类。这样你可以包含一个还未定义的对象:

class AuthorSchema(Schema):
    # Make sure to use the 'only' or 'exclude' params
    # to avoid infinite recursion
    books = fields.Nested('BookSchema', many=True, exclude=('author', ))
    class Meta:
        fields = ('id', 'name', 'books')

class BookSchema(Schema):
    author = fields.Nested(AuthorSchema, only=('id', 'name'))
    class Meta:
        fields = ('id', 'title', 'author')

举个例子,Author类包含很多books,而BookAuthor也有多对一的关系。

from marshmallow import pprint
from mymodels import Author, Book

author = Author(name='William Faulkner')
book = Book(title='As I Lay Dying', author=author)
book_result, errors = BookSchema().dump(book)
pprint(book_result, indent=2)
# {
#   "id": 124,
#   "title": "As I Lay Dying",
#   "author": {
#     "id": 8,
#     "name": "William Faulkner"
#   }
# }

author_result, errors = AuthorSchema().dump(author)
pprint(author_result, indent=2)
# {
#   "id": 8,
#   "name": "William Faulkner",
#   "books": [
#     {
#       "id": 124,
#       "title": "As I Lay Dying"
#     }
#   ]
# }

Nesting A Schema Within Itself

如果需要自引用,"Nested"构造时传入"self" (包含引号)即可:

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email()
    friends = fields.Nested('self', many=True)
    # Use the 'exclude' argument to avoid infinite recursion
    employer = fields.Nested('self', exclude=('employer', ), default=None)

user = User("Steve", '[email protected]')
user.friends.append(User("Mike", '[email protected]'))
user.friends.append(User('Joe', '[email protected]'))
user.employer = User('Dirk', '[email protected]')
result = UserSchema().dump(user)
pprint(result.data, indent=2)
# {
#     "name": "Steve",
#     "email": "[email protected]",
#     "friends": [
#         {
#             "name": "Mike",
#             "email": "[email protected]",
#             "friends": [],
#             "employer": null
#         },
#         {
#             "name": "Joe",
#             "email": "[email protected]",
#             "friends": [],
#             "employer": null
#         }
#     ],
#     "employer": {
#         "name": "Dirk",
#         "email": "[email protected]",
#         "friends": []
#     }
# }

你可能感兴趣的:(渣翻marshmallow文档)