marshmallow
marshmallow是一个用来将复杂的orm对象与python原生数据类型之间相互转换的库,简而言之,就是实现object -> dict
, objects -> list
, string -> dict
和 string -> list
。
要用到marshmallow,首先需要一个用于序列化和反序列化的类:
import datetime as dt
class User(object):
def __init__(self, name, email):
self.name = name
self.email = email
self.created_at = dt.datetime.now()
def __repr__(self):
return ''.format(self=self)
Schema
要对一个类或者一个json数据实现相互转换(即序列化和反序列化,序列化的意思是将数据转化为可存储或可传输的数据类型),需要一个中间载体,这个载体就是Schema。除了转换以外,Schema还可以用来做数据校验。每个需要转换的类,都需要一个对应的Schema:
from marshmallow import Schema, fields
class UserSchema(Schema):
name = fields.Str()
email = fields.Email()
created_at = fields.DateTime()
Serializing(序列化)
序列化使用schema中的dump()
或dumps()
方法,其中,dump()
方法实现obj -> dict
,dumps()
方法实现 obj -> string
,由于Flask能直接序列化dict(使用jsonify),而且你肯定还会对dict进一步处理,没必要现在转化成string,所以通常Flask与Marshmallow配合序列化时,用 dump()
方法即可:
from marshmallow import pprint
user = User(name="Monty", email="[email protected]")
schema = UserSchema()
result = schema.dump(user)
pprint(result.data)
# {"name": "Monty",
# "email": "[email protected]",
# "created_at": "2014-08-17T14:54:16.049594+00:00"}
过滤输出
当然你不需要每次都输出对象中所有字段,可以使用only
参数来指定你需要输出的字段,这个在实际场景中很常见:
summary_schema = UserSchema(only=('name', 'email'))
summary_schema.dump(user).data
# {"name": "Monty Python", "email": "[email protected]"}
你也可以使用exclude
字段来排除你不想输出的字段。
Deserializing(反序列化)
相对dump()
的方法就是load()
了,可以将字典等类型转换成应用层的数据结构,即orm对象:
from pprint import pprint
user_data = {
'created_at': '2014-08-11T05:26:03.869245',
'email': u'[email protected]',
'name': u'Ken'
}
schema = UserSchema()
result = schema.load(user_data)
pprint(result.data)
# {'name': 'Ken',
# 'email': '[email protected]',
# 'created_at': datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)},
对反序列化而言,将传入的dict
变成object
更加有意义。在Marshmallow中,dict -> object
的方法需要自己实现,然后在该方法前面加上一个decoration:post_load
即可,即:
from marshmallow import Schema, fields, post_load
class UserSchema(Schema):
name = fields.Str()
email = fields.Email()
created_at = fields.DateTime()
@post_load
def make_user(self, data):
return User(**data)
这样每次调用load()
方法时,会按照make_user
的逻辑,返回一个User
类对象:
user_data = {
'name': 'Ronnie',
'email': '[email protected]'
}
schema = UserSchema()
result = schema.load(user_data)
result.data # =>
tips: 相对于dumps()
,也存在loads()
方法,用于string -> object
,有些简单场景可以用。
Objects <-> List
上面的序列化和反序列化,是针对一个object而言的,对于objects的处理,只需在schema中增加一个参数:many=True
,即:
user1 = User(name="Mick", email="[email protected]")
user2 = User(name="Keith", email="[email protected]")
users = [user1, user2]
# option 1:
schema = UserSchema(many=True)
result = schema.dump(users)
# Option 2:
schema = UserSchema()
result = schema.dump(users, many=True)
result.data
# [{'name': u'Mick',
# 'email': u'[email protected]',
# 'created_at': '2014-08-17T14:58:57.600623+00:00'}
# {'name': u'Keith',
# 'email': u'[email protected]',
# 'created_at': '2014-08-17T14:58:57.600623+00:00'}]
Validation
Schema.load()
和 loads()
方法会在返回值中加入验证错误的dictionary
,例如email
和URL
都有内建的验证器。
data, errors = UserSchema().load({'email': 'foo'})
errors # => {'email': ['"foo" is not a valid email address.']}
# OR, equivalently
result = UserSchema().load({'email': 'foo'})
result.errors # => {'email': ['"foo" is not a valid email address.']}
当验证一个集合时,返回的错误dictionary
会以错误序号对应错误信息的key:value形式保存:
class BandMemberSchema(Schema):
name = fields.String(required=True)
email = fields.Email()
user_data = [
{'email': '[email protected]', 'name': 'Mick'},
{'email': 'invalid', 'name': 'Invalid'}, # invalid email
{'email': '[email protected]', 'name': 'Keith'},
{'email': '[email protected]'}, # missing "name"
]
result = BandMemberSchema(many=True).load(user_data)
result.errors
# {1: {'email': ['"invalid" is not a valid email address.']},
# 3: {'name': ['Missing data for required field.']}}
你可以向内建的field
中传入validate
参数来定制验证的逻辑,validate
的值可以是函数,匿名函数lambda
,或者是定义了__call__
的对象:
class ValidatedUserSchema(UserSchema):
# NOTE: This is a contrived example.
# You could use marshmallow.validate.Range instead of an anonymous function here
age = fields.Number(validate=lambda n: 18 <= n <= 40)
in_data = {'name': 'Mick', 'email': '[email protected]', 'age': 71}
result = ValidatedUserSchema().load(in_data)
result.errors # => {'age': ['Validator (71.0) is False']}
如果你传入的函数中定义了ValidationError
,当它触发时,错误信息会得到保存:
from marshmallow import Schema, fields, ValidationError
def validate_quantity(n):
if n < 0:
raise ValidationError('Quantity must be greater than 0.')
if n > 30:
raise ValidationError('Quantity must not be greater than 30.')
class ItemSchema(Schema):
quantity = fields.Integer(validate=validate_quantity)
in_data = {'quantity': 31}
result, errors = ItemSchema().load(in_data)
errors # => {'quantity': ['Quantity must not be greater than 30.']}
注意:
如果你需要执行多个验证,你应该传入可调用的验证器的集合(list, tuple, generator)
注意2:
Schema.dump()
也会返回错误信息dictionary
,也会包含序列化时的所有ValidationErrors
。但是required
, allow_none
, validate
, @validates
, 和 @validates_schema
只用于反序列化,即Schema.load()
。
Field Validators as Methods
把生成器写成方法可以提供极大的便利。使用validates
装饰器就可以注册一个验证方法:
from marshmallow import fields, Schema, validates, ValidationError
class ItemSchema(Schema):
quantity = fields.Integer()
@validates('quantity')
def validate_quantity(self, value):
if value < 0:
raise ValidationError('Quantity must be greater than 0.')
if value > 30:
raise ValidationError('Quantity must not be greater than 30.')
strict Mode
如果将strict=True
传入Schema
构造器或者class
的Meta
参数里,则仅会在传入无效数据是报错。可以使用ValidationError.messages
变量来获取验证错误的dictionary
。
Required Fields
你可以在field
中传入required=True
.当Schema.load()
的输入缺少某个字段时错误会记录下来。
如果需要定制required fields
的错误信息,可以传入一个error_messages
参数,参数的值为以required
为键的键值对。
class UserSchema(Schema):
name = fields.String(required=True)
age = fields.Integer(
required=True,
error_messages={'required': 'Age is required.'}
)
city = fields.String(
required=True,
error_messages={'required': {'message': 'City required', 'code': 400}}
)
email = fields.Email()
data, errors = UserSchema().load({'email': '[email protected]'})
errors
# {'name': ['Missing data for required field.'],
# 'age': ['Age is required.'],
# 'city': {'message': 'City required', 'code': 400}}
Partial Loading
按照RESTful架构风格的要求,更新数据使用HTTP方法中的PUT
或PATCH
方法,使用PUT方法时,需要把完整的数据全部传给服务器,使用PATCH
方法时,只需把需要改动的部分数据传给服务器即可。因此,当使用PATCH
方法时,由于之前设定的required
,传入数据存在无法通过Marshmallow
数据校验的风险,为了避免这种情况,需要借助Partial Loading
功能。
实现Partial Loadig
只要在schema
构造器中增加一个partial
参数即可:
class UserSchema(Schema):
name = fields.String(required=True)
age = fields.Integer(required=True)
data, errors = UserSchema().load({'age': 42}, partial=('name',))
# OR UserSchema(partial=('name',)).load({'age': 42})
data, errors # => ({'age': 42}, {})
Schema.validate
如果你只是想用Schema
验证数据,而不生成对象,可以使用Schema.validate()
.
errors = UserSchema().validate({'name': 'Ronnie', 'email': 'invalid-email'})
errors # {'email': ['"invalid-email" is not a valid email address.']}
Specifying Attribute Names
Schemas
默认会编列传入对象和自身定义的fields
相同的属性,然而你也会有需求使用不同的fields
和属性名。在这种情况下,你需要明确定义这个fields
将从什么属性名取值:
class UserSchema(Schema):
name = fields.String()
email_addr = fields.String(attribute="email")
date_created = fields.DateTime(attribute="created_at")
user = User('Keith', email='[email protected]')
ser = UserSchema()
result, errors = ser.dump(user)
pprint(result)
# {'name': 'Keith',
# 'email_addr': '[email protected]',
# 'date_created': '2014-08-17T14:58:57.600623+00:00'}
Specifying Deserialization Keys
Schemas
默认会反编列传入字典和输出字典中相同的字段名。如果你觉得数据不匹配你的schema
,你可以传入load_from
参数指定需要增加load
的字段名(原字段名也能load
,且优先load
原字段名):
class UserSchema(Schema):
name = fields.String()
email = fields.Email(load_from='emailAddress')
data = {
'name': 'Mike',
'emailAddress': '[email protected]'
}
s = UserSchema()
result, errors = s.load(data)
#{'name': u'Mike',
# 'email': '[email protected]'}
Specifying Serialization Keys
如果你需要编列一个field
成一个不同的名字时,可以使用dump_to
,逻辑和load_from
类似:
class UserSchema(Schema):
name = fields.String(dump_to='TheName')
email = fields.Email(load_from='CamelCasedEmail', dump_to='CamelCasedEmail')
data = {
'name': 'Mike',
'email': '[email protected]'
}
s = UserSchema()
result, errors = s.dump(data)
#{'TheName': u'Mike',
# 'CamelCasedEmail': '[email protected]'}
“Read-only” and “Write-only” Fields
可以指定某些字段只能够dump()
或load()
:
class UserSchema(Schema):
name = fields.Str()
# password is "write-only"
password = fields.Str(load_only=True)
# created_at is "read-only"
created_at = fields.DateTime(dump_only=True)
Nesting Schemas
当你的模型含有外键,那这个外键的对象在Schemas
如何定义。举个例子,Blog就具有User对象作为它的外键:
Use a Nested field to represent the relationship, passing in a nested schema class.
import datetime as dt
class User(object):
def __init__(self, name, email):
self.name = name
self.email = email
self.created_at = dt.datetime.now()
self.friends = []
self.employer = None
class Blog(object):
def __init__(self, title, author):
self.title = title
self.author = author # A User object
使用Nested field
表示外键对象:
from marshmallow import Schema, fields, pprint
class UserSchema(Schema):
name = fields.String()
email = fields.Email()
created_at = fields.DateTime()
class BlogSchema(Schema):
title = fields.String()
author = fields.Nested(UserSchema)
这样序列化blog就会带上user信息了:
user = User(name="Monty", email="[email protected]")
blog = Blog(title="Something Completely Different", author=user)
result, errors = BlogSchema().dump(blog)
pprint(result)
# {'title': u'Something Completely Different',
# {'author': {'name': u'Monty',
# 'email': u'[email protected]',
# 'created_at': '2014-08-17T14:58:57.600623+00:00'}}
如果field 是多个对象的集合,定义时可以使用many
参数:
collaborators = fields.Nested(UserSchema, many=True)
如果外键对象是自引用,则Nested里第一个参数为'self'
Specifying Which Fields to Nest
如果你想指定外键对象序列化后只保留它的几个字段,可以使用Only
参数:
class BlogSchema2(Schema):
title = fields.String()
author = fields.Nested(UserSchema, only=["email"])
schema = BlogSchema2()
result, errors = schema.dump(blog)
pprint(result)
# {
# 'title': u'Something Completely Different',
# 'author': {'email': u'[email protected]'}
# }
如果需要选择外键对象的字段层次较多,可以使用"."操作符来指定:
class SiteSchema(Schema):
blog = fields.Nested(BlogSchema2)
schema = SiteSchema(only=['blog.author.email'])
result, errors = schema.dump(site)
pprint(result)
# {
# 'blog': {
# 'author': {'email': u'[email protected]'}
# }
# }
Note
如果你往Nested
是多个对象的列表,传入only可以获得这列表的指定字段。
class UserSchema(Schema):
name = fields.String()
email = fields.Email()
friends = fields.Nested('self', only='name', many=True)
# ... create ``user`` ...
result, errors = UserSchema().dump(user)
pprint(result)
# {
# "name": "Steve",
# "email": "[email protected]",
# "friends": ["Mike", "Joe"]
# }
这种情况,也可以使用exclude 去掉你不需要的字段。同样这里也可以使用"."
操作符。
Two-way Nesting
如果有两个对象需要相互包含,可以指定Nested
对象的类名字符串,而不需要类。这样你可以包含一个还未定义的对象:
class AuthorSchema(Schema):
# Make sure to use the 'only' or 'exclude' params
# to avoid infinite recursion
books = fields.Nested('BookSchema', many=True, exclude=('author', ))
class Meta:
fields = ('id', 'name', 'books')
class BookSchema(Schema):
author = fields.Nested(AuthorSchema, only=('id', 'name'))
class Meta:
fields = ('id', 'title', 'author')
举个例子,Author
类包含很多books,而Book
对Author
也有多对一的关系。
from marshmallow import pprint
from mymodels import Author, Book
author = Author(name='William Faulkner')
book = Book(title='As I Lay Dying', author=author)
book_result, errors = BookSchema().dump(book)
pprint(book_result, indent=2)
# {
# "id": 124,
# "title": "As I Lay Dying",
# "author": {
# "id": 8,
# "name": "William Faulkner"
# }
# }
author_result, errors = AuthorSchema().dump(author)
pprint(author_result, indent=2)
# {
# "id": 8,
# "name": "William Faulkner",
# "books": [
# {
# "id": 124,
# "title": "As I Lay Dying"
# }
# ]
# }
Nesting A Schema Within Itself
如果需要自引用,"Nested"构造时传入"self" (包含引号)即可:
class UserSchema(Schema):
name = fields.String()
email = fields.Email()
friends = fields.Nested('self', many=True)
# Use the 'exclude' argument to avoid infinite recursion
employer = fields.Nested('self', exclude=('employer', ), default=None)
user = User("Steve", '[email protected]')
user.friends.append(User("Mike", '[email protected]'))
user.friends.append(User('Joe', '[email protected]'))
user.employer = User('Dirk', '[email protected]')
result = UserSchema().dump(user)
pprint(result.data, indent=2)
# {
# "name": "Steve",
# "email": "[email protected]",
# "friends": [
# {
# "name": "Mike",
# "email": "[email protected]",
# "friends": [],
# "employer": null
# },
# {
# "name": "Joe",
# "email": "[email protected]",
# "friends": [],
# "employer": null
# }
# ],
# "employer": {
# "name": "Dirk",
# "email": "[email protected]",
# "friends": []
# }
# }