- ArrayBlockingQueue基于数组,先进先出,从尾部插入到队列,从头部开始返回。
- 线程安全的有序阻塞队列,内部通过“互斥锁”保护竞争资源。
- 指定时间的阻塞读写
- 容量可限制
定义
ArrayBlockingQueue继承AbstractQueue,实现了BlockingQueue,Serializable接口,内部元素使用Object[]数组保存。初始化时候需要指定容量ArrayBlockingQueue(int capacity)
,ArrayBlockingQueue默认会使用非公平锁。
ArrayBlockingQueue只使用一把锁,造成在存取两种操作时会竞争同一把锁,而使得性能相对低下。
add(E)方法和offer(E)
调用父类中的add方法,查看源码可知父类中的add方法是调用offer方法实现,所以查看offer方法源码,如下:
public boolean offer(E e) {
//检查元素不为null
checkNotNull(e);
//加锁,独占锁保护竞态资源。
final ReentrantLock lock = this.lock;
lock.lock();
try {
//队列已满,返回false
if (count == items.length)
return false;
else {
//插入元素,返回true
insert(e);
return true;
}
} finally {
//释放锁
lock.unlock();
}
}
insert源码如下:
private void insert(E x) {
//将元素添加到队列中
items[putIndex] = x;
//putIndex表示下一个被添加元素的索引,设置下一个被添加元素的索引,若队列满了,就设置下一个被添加元素索引为0
putIndex = inc(putIndex);
//队列的元素数加1
++count;
//唤醒notEmpty上的等待线程,也就是取元素的线程。
notEmpty.signal();
}
take()方法
public E take() throws InterruptedException {
//获取独占锁,加锁,线程是中断状态的话会抛异常
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
//队列为空,会一直等待
while (count == 0)
notEmpty.await();
//取元素的方法
return extract();
} finally {
//释放锁
lock.unlock();
}
}
private E extract() {
final Object[] items = this.items;
E x = this.cast(items[takeIndex]);
//取完之后,删除元素
items[takeIndex] = null;
//设置下一个被取出的元素索引,若是最后一个元素,下一个被取出的元素索引为0
takeIndex = inc(takeIndex);
//元素数减1
--count;
//唤醒添加元素的线程
notFull.signal();
return x;
}
源码分析
jdk1.7.0_71
//队列元素
final Object[] items;
//下次被take,poll,remove的索引
int takeIndex;
//下次被put,offer,add的索引
int putIndex;
//队列中元素的个数
int count;
//保护所有访问的主锁
final ReentrantLock lock;
//等待take锁,读线程条件
private final Condition notEmpty;
//等待put锁,写线程条件
private final Condition notFull;
ArrayBlockingQueue(int capacity) 给定容量和默认的访问规则初始化
public ArrayBlockingQueue(int capacity){}
ArrayBlockingQueue(int capacity, boolean fair)知道你跟容量和访问规则
//fair为true,在插入和删除时,线程的队列访问会阻塞,并且按照先进先出的顺序,false,访问顺序是不确定的
public ArrayBlockingQueue(int capacity, boolean fair) {
if (capacity <= 0)
throw new IllegalArgumentException();
this.items = new Object[capacity];
lock = new ReentrantLock(fair);
notEmpty = lock.newCondition();
notFull = lock.newCondition();
}
ArrayBlockingQueue(int capacity, boolean fair,Collection extends E> c) 指定容量,访问规则,集合来初始化
public ArrayBlockingQueue(int capacity, boolean fair,
Collection extends E> c) {}
add(E e) 添加元素到队列末尾,成功返回true,队列满了抛异常IllegalStateException
public boolean add(E e) {
return super.add(e);
}
offer(E e)添加元素到队列末尾,成功返回true,队列满了返回false
public boolean offer(E e) {}
put(E e) 添加元素到队列末尾,队列满了,等待.
public void put(E e) throws InterruptedException {}
offer(E e, long timeout, TimeUnit unit)添加元素到队列末尾,如果队列满了,等待指定的时间
public boolean offer(E e, long timeout, TimeUnit unit){}
poll() 移除队列头
public E poll() {}
take() 移除队列头,队列为空的话就等待
public E take() throws InterruptedException {}
poll(long timeout, TimeUnit unit)移除队列头,队列为空,等待指定的时间
public E poll(long timeout, TimeUnit unit) throws InterruptedException {}
peek()返回队列头,不删除
public E peek() {}
size()
public int size(){}
remainingCapacity() 返回无阻塞情况下队列能接受容量的大小
public int remainingCapacity() {}
remove(Object o)从队列中删除元素
public boolean remove(Object o) {}
contains(Object o) 是否包含元素
public boolean contains(Object o) {}
toArray()
public Object[] toArray(){}
toArray(T[] a)
public T[] toArray(T[] a) {}
toString()
public String toString(){}
clear()
public void clear(){}
drainTo(Collection super E> c)移除队列中可用元素,添加到集合中
public int drainTo(Collection super E> c) {}
drainTo(Collection super E> c, int maxElements)移除队列中给定数量的可用元素,添加到集合中
public int drainTo(Collection super E> c, int maxElements) {}
iterator() 返回一个迭代器
public Iterator iterator() {
return new Itr();
}
参考
http://www.jianshu.com/p/9a652250e0d1