ThreadLocal
Java篇
- 是什么
- 怎么用
- 源码
- 缺点
- 总结
是什么
ThreadLocal是一个关于创建线程局部变量的类,这个变量只能当前线程使用,其他线程不可用。
ThreadLocal提供get()和set()方法创建和修改变量。
怎么使用
ThreadLocal threadLocal = new ThreadLocal();
ThreadLocal threadLocal = new ThreadLocal<>();
ThreadLocal threadLocal = new ThreadLocal() {
@Override
protected String initialValue() {
return "初始化值";
}
};
源码
类结构图
get(),set()
查看ThreadLocal中的get(),set()中有一个ThreadLocalMap对象
//set 方法
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
//get方法
public T get() {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null) {
ThreadLocalMap.Entry e = map.getEntry(this);
if (e != null) {
@SuppressWarnings("unchecked")
T result = (T)e.value;
return result;
}
}
return setInitialValue();
}
ThreadLocalMap
ThreadLocalMap 就是一个内部静态类,没有继承也没有接口,是一个自定义的Hash映射,用户维护线程局部变量。
static class ThreadLocalMap
ThreadLocalMap的内部类Entry,继承WeakReference 弱引用
static class Entry extends WeakReference> {
Object value;
Entry(ThreadLocal> k, Object v) {
//key放在WeakReference>中
super(k);
//变量放在Object value中
value = v;
}
}
ThreadLocalMap中存放线程局部变量的数据结构
private Entry[] table;
小结:
- ThreadLocal ——> ThreadLocalMap——> Entry[]
- Entry维护一个ThreadLocal 作为key,value对应ThreadLocal的值
初始化方法
ThreadLocalMap(ThreadLocal> firstKey, Object firstValue) {
//默认容量为16
table = new Entry[INITIAL_CAPACITY];
//threadLocalHashCode是一个原子类AtomicInteger的实例,每次调用会增加0x61c88647。&位移操作使存放分布均匀
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
//放入数组
table[i] = new Entry(firstKey, firstValue);
size = 1;
setThreshold(INITIAL_CAPACITY);
}
//nextHashCode实现
private final int threadLocalHashCode = nextHashCode();
private static AtomicInteger nextHashCode =
new AtomicInteger();
private static final int HASH_INCREMENT = 0x61c88647;
private static int nextHashCode() {
return nextHashCode.getAndAdd(HASH_INCREMENT);
}
小结:
- ThreadLocalMap默认容量为16,每次计算索引位置会加0x61c88647然后和长度-1取模
- 索引是原子类
Entry的get
private Entry getEntry(ThreadLocal> key) {
//定位i的位置
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e);
}
private Entry getEntryAfterMiss(ThreadLocal> key, int i, Entry e) {
Entry[] tab = table;
int len = tab.length;
//hashcode索引相同所以查找下一个,用循环比对取出
while (e != null) {
ThreadLocal> k = e.get();
if (k == key)
return e;
if (k == null)
expungeStaleEntry(i);
else
i = nextIndex(i, len);
e = tab[i];
}
return null;
}
小结:
- get方法中先计算索引位置,如果key相同则返回,不同则用线性探测法取出,当key为null的时候清理i所在位置直到不为null的数据。如果找不到key的数据则返回null
Entry的Set
private void set(ThreadLocal> key, Object value) {
Entry[] tab = table;
int len = tab.length;
//hashcode索引
int i = key.threadLocalHashCode & (len-1);
//线性探测法,如果在有值的情况下,key不同则继续下一个
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
ThreadLocal> k = e.get();
//如果当前有值&&key相同则更新value
if (k == key) {
e.value = value;
return;
}
//如果key空,则key-value重新替换
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
//索引位置找到,插入key-value,对size+1
tab[i] = new Entry(key, value);
int sz = ++size;
//cleanSomeSlots清理key关联的对象被回收的数据,如果没有被清理的&&size大于扩容因子,刷新
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
小结:
1.计算索引位置
2.如果当前位置有值则索引+1判断是否为空,不为空继续+1,直到找到位置插入
3.size+1
4.是否清理key为null的数据,如果没有被清理&& size大于列表长度的2/3则扩容
清理key关联的对象被回收的数据
private boolean cleanSomeSlots(int i, int n) {
boolean removed = false;
Entry[] tab = table;
int len = tab.length;
do {
i = nextIndex(i, len);
Entry e = tab[i];
//key为null,被清理
if (e != null && e.get() == null) {
n = len;
removed = true;
//移除i位置之后为key为null的元素
i = expungeStaleEntry(i);
}
} while ( (n >>>= 1) != 0);
return removed;
}
expungeStaleEntry方法
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
//将上面staleSlot的数据清空,大小减去1
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--;
Entry e;
int i;
//以staleSlot往后找key为null的
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal> k = e.get();
//key为null清空
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
//key不为null,计算当前hashCode索引位置,如果不相同则把当前i清除,当前h位置不为null,再向后查找key合适的索引
int h = k.threadLocalHashCode & (len - 1);
if (h != i) {
tab[i] = null;
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
小结:
- 从staleSlot开始,清除key为null的Entry,并将不为空的元素放到合适的位置,最后遍历到Entry为空的元素时,跳出循环返回当前索引位置
rehash方法
private void rehash() {
expungeStaleEntries(); //调用expungeStaleEntries()方法
//size的长度超过容量的3/4,则扩容
if (size >= threshold - threshold / 4)
resize();
}
private void resize() {
Entry[] oldTab = table;
int oldLen = oldTab.length;
int newLen = oldLen * 2;
Entry[] newTab = new Entry[newLen];
int count = 0;
for (int j = 0; j < oldLen; ++j) {
Entry e = oldTab[j];
if (e != null) {
ThreadLocal> k = e.get();
//key为null,value也设置为null,清理
if (k == null) {
e.value = null; // Help the GC
} else {
//重新设置元素位置
int h = k.threadLocalHashCode & (newLen - 1);
while (newTab[h] != null)
h = nextIndex(h, newLen);
newTab[h] = e;
count++;
}
}
}
//设置阈值
setThreshold(newLen);
size = count;
table = newTab;
}
private void expungeStaleEntries() {
Entry[] tab = table;
int len = tab.length;
for (int j = 0; j < len; j++) {
Entry e = tab[j];
if (e != null && e.get() == null)
expungeStaleEntry(j);
}
}
小结:
- 调用expungeStaleEntries方法,清理整个table中key为null的Entry
- 如果清理后size超过阈值的1/2,则进行扩容。
- 新表长度为老表2倍,创建新表。
- 遍历老表所有元素,如果key为null,将value清空;否则通过hash code计算新表的索引位置h,如果h已经有元素,则调用nextIndex方法直到寻找到空位置,将元素放在新表的对应位置。
- 设置新表扩容的阈值、更新size、table指向新表
缺点
内存泄露
从Entry源码中可以看出,Entry继承了WeakReference弱引用,如果外部没有引用ThreadLocal,则Entry中作为Key的ThreadLocal会被销毁成为null,那么它所对应的value不会被访问到。当线程一直在执行&&没有进行remove,rehash等操作时,value会一直存在内存,从而造成内存泄露
总结
- Thread中都有一个ThreadLocalMap
- ThreadLocalMap的key是ThreadLocal实例
- 默认容量大小为16,当size超过2/3容量&&没被清理就rehash,
- 当size超过扩容因子3/4的时候扩容为原来的2倍
- 当发现一个key为null的时候,会进行清理,直到下一个key不为null
- has冲突的解决方法和hashMap不相同,ThreadLocal是找这个冲突索引的下一个元素直到找到,hashMap是转换为红黑树