Gaussian field consensus论文解读及MATLAB实现

Gaussian field consensus论文解读及MATLAB实现

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

一、Introduction

论文:Wang G , Chen Y , Zheng X . Gaussian field consensus: A robust nonparametric matching method for outlier rejection[J]. Pattern Recognition, 2018, 74:305-316.

Gaussian field consensus论文解读及MATLAB实现_第1张图片

Gaussian field consensus论文解读及MATLAB实现_第2张图片

Gaussian field consensus论文解读及MATLAB实现_第3张图片

An image pair and its putative correspondences. Blue and red lines represent inliers and outliers respectively.

Gaussian field consensus论文解读及MATLAB实现_第4张图片

Gaussian field consensus论文解读及MATLAB实现_第5张图片

二、GFC algorithm

Gaussian field consensus论文解读及MATLAB实现_第6张图片

Gaussian field consensus论文解读及MATLAB实现_第7张图片

Gaussian field consensus论文解读及MATLAB实现_第8张图片

Gaussian field consensus论文解读及MATLAB实现_第9张图片

Gaussian field consensus论文解读及MATLAB实现_第10张图片

Gaussian field consensus论文解读及MATLAB实现_第11张图片

三、Experimental results

Gaussian field consensus论文解读及MATLAB实现_第12张图片

Gaussian field consensus论文解读及MATLAB实现_第13张图片

Gaussian field consensus论文解读及MATLAB实现_第14张图片

四、Conclusion

Gaussian field consensus论文解读及MATLAB实现_第15张图片

五、Code

results.m

function criterion=results()
%  GFC; 
% 读取图像及对应关系数据
% church
% ImgName1 = './TestData/church1.jpg' ;
% ImgName2 = './TestData/church2.jpg' ;
% load('./TestData/church.mat');
% eye
ImgName1 = './TestData/14_a.jpg' ;
ImgName2 = './TestData/14_b.jpg' ;
load('./TestData/14_20.mat');

I1 = imread(ImgName1) ;
I2 = imread(ImgName2) ;
t0=cputime;
[precision, recall, accuracy, f1]=demo_GFC(I1, I2, X, Y, CorrectIndex);
run_time=cputime-t0;
criterion=[precision; recall; accuracy; f1; run_time];

demo_GFC.m

function [precision, recall, accuracy, f1]=demo_GFC(I1, I2, X, Y, CorrectIndex)
label=CorrectIndex;
delta =0.5;
[index] = GFC_match(X,Y,delta);
[precision, recall, accuracy, f1]  = evaluatePR(label, index, size(X,1));

% Plot results
%原始结果
% N=size(X);
% temp=1:N;
% temp=temp';
% plot_matches(I1, I2, X, Y, temp, label);
%实验结果
plot_matches(I1, I2, X, Y, index, label);

adjacency.m

function A = adjacency(DATA, TYPE, PARAM, DISTANCEFUNCTION);

% Compute the adjacency graph of the data set DATA
%
% A = adjacency(DATA, TYPE, PARAM, DISTANCEFUNCTION);
% 
% DATA - NxK matrix. Data points are rows. 
% TYPE - string 'nn' or string 'epsballs'.
% PARAM - integer if TYPE='nn', real number if TYPE='epsballs'.
% DISTANCEFUNCTION - function mapping a (DxM) and a (D x N) matrix
%                    to an M x N distance matrix (D:dimensionality)
% Returns: A, sparse symmetric NxN matrix of distances between the
% adjacent points. 
%
% Example: 
% 
% A = adjacency(X,'nn',6) 
%   A contains the adjacency matrix for the data
%   set X. For each point, the distances to 6 adjacent points are
%   stored. N
%
% Note: the adjacency relation is symmetrized, i.e. if
% point a is adjacent to point b, then point b is also considered to be
% adjacent to point a.
%
%
% Author: 
%
% Mikhail Belkin 
% [email protected]
%
% Modified by: Vikas Sindhwani
% June 2004

% disp('Computing Adjacency Graph');

if (nargin < 3) | (strcmp(TYPE,'nn') & strcmp(TYPE,'epsballs')) | ~isreal(PARAM)
  
  disp(sprintf('ERROR: Too few arguments given or incorrect arguments.\n'));
  disp(sprintf('USAGE:\n A = laplacian(DATA, TYPE, PARAM)'));
  disp(sprintf('DATA - the data matrix. Data points are rows.'));
  disp(sprintf('Nearest neigbors: TYPE =''nn''    PARAM = number of nearest neigbors')); 
  disp(sprintf('Epsilon balls: TYPE =''epsballs''    PARAM = redius of the ball\n'));
  return;
end

n = size(DATA,1);
%disp (sprintf ('DATA: %d points in %d dimensional space.',n,size (DATA,2)));

switch TYPE
 case {'nn'}
 % disp(sprintf('Creating the adjacency matrix. Nearest neighbors, N=%d.', PARAM)); 
 case{'eps', 'epsballs'} 
  %disp(sprintf('Creating the adjacency matrix. Epsilon balls, eps=%f.', PARAM));
end;

  
A = sparse(n,n);
step = 100;


if (strcmp(TYPE,'nn'))   
  for i1=1:step:n    
    i2 = i1+step-1;
    if (i2> n) 
      i2=n;
    end;
    XX= DATA(i1:i2,:);  
    dt = feval(DISTANCEFUNCTION, XX',DATA');
    [Z,I] = sort ( dt,2);
    
    
    
    for i=i1:i2
      if ( mod(i, 500) ==0) 
	%disp(sprintf('%d points processed.', i));
      end;
      for j=2:PARAM+1
	A(i,I(i-i1+1,j))= Z(i-i1+1,j); 
	A(I(i-i1+1,j),i)= Z(i-i1+1,j); 
      end;    
    end
    
  
  end;

% epsilon balls
else
  for i1=1:step:n
    i2 = i1+step-1;
  if (i2> n) 
        i2=n;
  end;

  
  XX= DATA(i1:i2,:);  
  dt = feval(DISTANCEFUNCTION, XX',DATA');
  [Z,I] = sort ( dt,2 );
  
  for i=i1:i2
  %  if ( mod(i, 500) ==0) disp(sprintf('%d points processed.', i)); end;
    j=2;
    while ( (Z(i-i1+1,j) < PARAM)) 
      j = j+1;
      jj = I(i-i1+1,j);
      A(i,jj)= Z(i-i1+1,j);
      A(jj,i)= Z(i-i1+1,j);
    end;    
  end
  end;
end;

con_K.m

function K=con_K(x,y,beta)
if nargin<3
    error('Error! Not enough input parameters.'); 
end
ks=-2 * beta^2;
[n, d]=size(x); 
[m, d]=size(y);
K=repmat(x,[1 1 m])-permute(repmat(y,[1 1 n]),[3 2 1]);
K=squeeze(sum(K.^2,2));
K=K/ks;
K=exp(K);

costfun_GFC.m

function [E, G] = costfun_GFC(param, X, Y,  U, beta,lambda,sigma2)
[N, D] = size(X);
M = size(U, 2);
Alpha = reshape(param, [M D]);
options=ml_options('Kernel','rbf', 'KernelParam', beta,'NN',5);
options.GraphWeights= 'heat';
options.GraphWeightParam=sqrt(sigma2);
L=laplacian(X,'nn',options);
E=lambda * trace(Alpha'*U'*L*U*Alpha);
V = Y-(X+ U*Alpha);
a = -2 / N / (2*sigma2)^(D/2);
F = exp(-sum(V.^2, 2) / (2*sigma2));
E = E + a * sum(F);
G =  -a * U' * ( V .* repmat(F, [1 D]) / sigma2 ) + 2*lambda * U'* L * U *Alpha;

euclidean.m

function d = euclidean(a,b,df)
% EUCLIDEAN - computes Euclidean distance matrix
%
% E = euclidean(A,B)
%
%    A - (DxM) matrix 
%    B - (DxN) matrix
%    df = 1, force diagonals to be zero; 0 (default), do not force
% 
% Returns:
%    E - (MxN) Euclidean distances between vectors in A and B
%
%
% Description : 
%    This fully vectorized (VERY FAST!) m-file computes the 
%    Euclidean distance between two vectors by:
%
%                 ||A-B|| = sqrt ( ||A||^2 + ||B||^2 - 2*A.B )
%
% Example : 
%    A = rand(400,100); B = rand(400,200);
%    d = distance(A,B);

% Author   : Roland Bunschoten
%            University of Amsterdam
%            Intelligent Autonomous Systems (IAS) group
%            Kruislaan 403  1098 SJ Amsterdam
%            tel.(+31)20-5257524
%            [email protected]
% Last Rev : Wed Oct 20 08:58:08 MET DST 1999
% Tested   : PC Matlab v5.2 and Solaris Matlab v5.3

% Copyright notice: You are free to modify, extend and distribute 
%    this code granted that the author of the original code is 
%    mentioned as the original author of the code.

% Fixed by JBT (3/18/00) to work for 1-dimensional vectors
% and to warn for imaginary numbers.  Also ensures that 
% output is all real, and allows the option of forcing diagonals to
% be zero.  

if (nargin < 2)
   error('Not enough input arguments');
end

if (nargin < 3)
   df = 0;    % by default, do not force 0 on the diagonal
end

if (size(a,1) ~= size(b,1))
   error('A and B should be of same dimensionality');
end

if ~(isreal(a)*isreal(b))
   disp('Warning: running distance.m with imaginary numbers.  Results may be off.'); 
end

if (size(a,1) == 1)
  a = [a; zeros(1,size(a,2))]; 
  b = [b; zeros(1,size(b,2))]; 
end

aa=sum(a.*a); bb=sum(b.*b); ab=a'*b; 
d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab);

% make sure result is all real
d = real(d); 

% force 0 on the diagonal? 
if (df==1)
  d = d.*(1-eye(size(d)));
end

evaluatePR.m

function [precision, recall, accuracy, f1] = evaluatePR(CorrectIndex, Index, siz)
tmp=zeros(1, siz);
tmp(Index) = 1;
tmp(CorrectIndex) = tmp(CorrectIndex)+1;
GFCCorrect = find(tmp == 2);
NumCorrectIndex = length(CorrectIndex);
NumGFCIndex = length(Index);
NumGFCCorrect = length(GFCCorrect);
% corrRate = NumCorrectIndex/siz;   
precision = NumGFCCorrect/NumGFCIndex;  
TP=NumGFCCorrect;
FP=NumGFCIndex-TP;
recall = NumGFCCorrect/NumCorrectIndex; 
FN=NumCorrectIndex-TP;
TN=siz-NumGFCIndex-FN;
accuracy=(TP+TN)/(TP+TN+FP+FN);
f1=(2*precision*recall)/(precision+recall);

GFC.m

function [idt, V , param] = GFC(X, Y, delta)
[N1, D] = size(X);
eta=0.98;
history.x = [ ];
history.fval = [ ];
beta =1.5;
lambda = 3;
sigma2=power(det(X'*X/N1), 1/(2^D));
M=round(sqrt(N1));
x0 = zeros(M*D, 1);
options = optimset( 'display','iter');
options = optimset(options, 'outputfcn',@GFCoutfun);
options = optimset( options, 'LargeScale','off');
options = optimset(options, 'MaxFunEvals', 100);
options = optimset(options, 'MaxIter', 100);
options = optimset(options, 'GradObj', 'on');
U=get_U(X,beta,M);
param = fminunc(@(x)costfun_GFC(x, X, Y,  U, beta, lambda, sigma2), x0, options);
Alpha = reshape(param, [M D]);
V=X+U*Alpha;
Pb =  exp(-sum((Y-V).^2, 2) / (sigma2)) ;
idt = find(Pb > delta);
    function stop = GFCoutfun(x,optimValues,state,varargin)
        stop = false;
        switch state
            case 'init'
            case 'iter'
                history.fval = [history.fval; optimValues.fval];
                history.x = [history.x; reshape(x,1,length(x))];
                Alpha = reshape(x, [M D]);
                V=X+U*Alpha;
                sigma2=sigma2 * eta;
            case 'done'
            otherwise
        end
    end
end

function U=get_U(X,beta,M)
tmp_X = unique(X, 'rows');
idx = randperm(size(tmp_X,1));
idx = idx(1:min(M,size(tmp_X,1)));
ctrl_pts=tmp_X(idx,:);
U = con_K(X, ctrl_pts, beta);
end

GFC_match.m

function [idt]=GFC_match(X,Y,delta)
Ni=2;
Xk=X;
k=1;
s=1;
while s
    X2=Xk;Y2=Y;
    normal.xm=0; normal.ym=0;
    normal.xscale=1; normal.yscale=1;
    [nX, nY, normal]=norm2s(X2,Y2);
    [idt, trans] = GFC(nX,nY,delta);
    trans=(trans)*normal.yscale+repmat(normal.ym,size(Y2,1),1);
    Xk = trans;
    if k==Ni
        s=0;
    else
        k=k+1;
    end
end
end

laplacian.m

function L = laplacian(DATA, TYPE, options)  

% Calculate the graph laplacian of the adjacency graph of data set DATA.
%
% L = laplacian(DATA, TYPE, PARAM)  
% 
% DATA - NxK matrix. Data points are rows. 
% TYPE - string 'nn' or string 'epsballs'
% options - Data structure containing the following fields
% NN - integer if TYPE='nn' (number of nearest neighbors), 
%       or size of 'epsballs'
% 
% DISTANCEFUNCTION - distance function used to make the graph
% WEIGHTTYPPE='binary' | 'distance' | 'heat'
% WEIGHTPARAM= width for heat kernel
% NORMALIZE= 0 | 1 whether to return normalized graph laplacian or not 
%
% Returns: L, sparse symmetric NxN matrix 
%
% Author: 
%
% Mikhail Belkin 
% [email protected]
%
% Modified by: Vikas Sindhwani ([email protected])
% June 2004

% disp('Computing Graph Laplacian.');


NN=options.NN; 
DISTANCEFUNCTION=options.GraphDistanceFunction;
WEIGHTTYPE=options.GraphWeights;
WEIGHTPARAM=options.GraphWeightParam;
NORMALIZE=options.GraphNormalize;




% calculate the adjacency matrix for DATA
A = adjacency(DATA, TYPE, NN, DISTANCEFUNCTION);
  
W = A;

% disassemble the sparse matrix
[A_i, A_j, A_v] = find(A);

switch WEIGHTTYPE
    
case 'distance'
   for i = 1: size(A_i)  
       W(A_i(i), A_j(i)) = A_v(i);
   end;
  
case 'binary'
 disp('Laplacian : Using Binary weights ');
    for i = 1: size(A_i)  
       W(A_i(i), A_j(i)) = 1;
    end;
 
case 'heat' 
%     disp(['Laplacian : Using Heat Kernel sigma : ' num2str(WEIGHTPARAM)]);
    t=WEIGHTPARAM;
    for i = 1: size(A_i)  
       W(A_i(i), A_j(i)) = exp(-A_v(i)^2/(2*t*t));
    end;
    
otherwise
    error('Unknown Weighttype');   
end

D = sum(W(:,:),2);   

if NORMALIZE==0
    L = spdiags(D,0,speye(size(W,1)))-W;
else % normalized laplacian
    D=diag(sqrt(1./D));
    L=eye(size(W,1))-D*W*D;
end

ml_options.m

function options = ml_options(varargin)

% ML_OPTIONS - Generate/alter options structure for training classifiers
% ----------------------------------------------------------------------------------------%
%   options = ml_options('PARAM1',VALUE1,'PARAM2',VALUE2,...) 
%
%   Creates an options structure "options" in which the named parameters
%   have the specified values.  Any unspecified parameters are set to
%   default values specified below.
%   options = ml_options (with no input arguments) creates an options structure
%   "options" where all the fields are set to default values specified below.
%
%   Example: 
%          options=ml_options('Kernel','rbf','KernelParam',0.5,'NN',6);
%
%   "options" structure is as follows:
%
%            Field Name:  Description                                         : default 
% -------------------------------------------------------------------------------------
%              'Kernel':  'linear' | 'rbf' | 'poly'                           : 'linear'
%         'KernelParam':  --    | sigma | degree                              :  1 
%                  'NN':  number of nearest neighbor                          :  6
%'GraphDistanceFuncion':  distance function for graph: 'euclidean' | 'cosine' : 'euclidean' 
%        'GraphWeights':  'binary' | 'distance' | 'heat'                      : 'binary'
%    'GraphWeightParam':  e.g For heat kernel, width to use                   :  1 
%      'GraphNormalize':  Use normalized Graph laplacian (1) or not (0)       :  1
%          'ClassEdges':  Disconnect Edges across classes:yes(1) no (0)       :  0
%             'gamma_A':  RKHS norm regularization parameter (Ambient)        :  1 
%             'gamma_I':  Manifold regularization parameter  (Intrinsic)      :  1    
% -------------------------------------------------------------------------------------
%
% Acknowledgement: Adapted from Anton Schwaighofer's software:
%               http://www.cis.tugraz.at/igi/aschwaig/software.html
%
% Author: Vikas Sindhwani ([email protected])
% June 2004
% ----------------------------------------------------------------------------------------%

% options default values
options = struct('Kernel','linear', ...
                 'KernelParam',1, ...
                 'NN',6,...
                 'GraphDistanceFunction','euclidean',... 
                 'GraphWeights', 'binary', ...
                 'GraphWeightParam',1, ...
                 'GraphNormalize',1, ...
                 'ClassEdges',0,...
                 'gamma_A',1.0,... 
                 'gamma_I',1.0); 
  

numberargs = nargin;

Names = fieldnames(options);
[m,n] = size(Names);
names = lower(Names);

i = 1;
while i <= numberargs
  arg = varargin{i};
  if isstr(arg)
    break;
  end
  if ~isempty(arg)
    if ~isa(arg,'struct')
      error(sprintf('Expected argument %d to be a string parameter name or an options structure.', i));
    end
    for j = 1:m
      if any(strcmp(fieldnames(arg),Names{j,:}))
        val = getfield(arg, Names{j,:});
      else
        val = [];
      end
      if ~isempty(val)
        [valid, errmsg] = checkfield(Names{j,:},val);
        if valid
          options = setfield(options, Names{j,:},val);
        else
          error(errmsg);
        end
      end
    end
  end
  i = i + 1;
end

% A finite state machine to parse name-value pairs.
if rem(numberargs-i+1,2) ~= 0
  error('Arguments must occur in name-value pairs.');
end
expectval = 0;
while i <= numberargs
  arg = varargin{i};
  if ~expectval
    if ~isstr(arg)
      error(sprintf('Expected argument %d to be a string parameter name.', i));
    end
    lowArg = lower(arg);
    j = strmatch(lowArg,names);
    if isempty(j)
      error(sprintf('Unrecognized parameter name ''%s''.', arg));
    elseif length(j) > 1 
      % Check for any exact matches (in case any names are subsets of others)
      k = strmatch(lowArg,names,'exact');
      if length(k) == 1
        j = k;
      else
        msg = sprintf('Ambiguous parameter name ''%s'' ', arg);
        msg = [msg '(' Names{j(1),:}];
        for k = j(2:length(j))'
          msg = [msg ', ' Names{k,:}];
        end
        msg = sprintf('%s).', msg);
        error(msg);
      end
    end
    expectval = 1;
  else           
    [valid, errmsg] = checkfield(Names{j,:}, arg);
    if valid
      options = setfield(options, Names{j,:}, arg);
    else
      error(errmsg);
    end
    expectval = 0;
  end
  i = i + 1;
end
  

function [valid, errmsg] = checkfield(field,value)
% CHECKFIELD Check validity of structure field contents.
%   [VALID, MSG] = CHECKFIELD('field',V) checks the contents of the specified
%   value V to be valid for the field 'field'.
%

valid = 1;
errmsg = '';
if isempty(value)
  return
end
isFloat = length(value==1) & isa(value, 'double');
isPositive = isFloat & (value>=0);
isString = isa(value, 'char');
range = [];
requireInt = 0;
switch field
  case 'NN'
    requireInt = 1;
    range=[1 Inf];
 case 'GraphNormalize'
     requireInt = 1;
     range=[0 1];
   case 'ClassEdges'
     requireInt = 1;
     range=[0 1];  
  case {'Kernel', 'GraphWeights', 'GraphDistanceFunction'}
    if ~isString,
      valid = 0;
      errmsg = sprintf('Invalid value for %s parameter: Must be a string', field);
    end
  case {'gamma_A', 'gamma_I','GraphWeightParam'}
    range = [0 Inf];
  case 'KernelParam'
    valid = 1; 
  otherwise
    valid = 0;
    error('Unknown field name for Options structure.')
end

if ~isempty(range),
  if (valuerange(2)),
    valid = 0;
    errmsg = sprintf('Invalid value for %s parameter: Must be scalar in the range [%g..%g]', ...
                     field, range(1), range(2));
  end
end

if requireInt & ((value-round(value))~=0),
  valid = 0;
  errmsg = sprintf('Invalid value for %s parameter: Must be integer', ...
                   field);
end

norm2s.m

function  [X, Y, normal] =norm2s(x,y)
x = double(x);
y = double(y);

n=size(x,1);
m=size(y,1);

normal.xm=mean(x);
normal.ym=mean(y);

x=x-repmat(normal.xm,n,1);
y=y-repmat(normal.ym,m,1);

normal.xscale=sqrt(sum(sum(x.^2,2))/n);
normal.yscale=sqrt(sum(sum(y.^2,2))/m);

X=x/normal.xscale;
Y=y/normal.yscale;

plot_matches.m

function plot_matches(I1, I2, X, Y, VFCIndex, CorrectIndex)
%   PLOT_MATCHES(I1, I2, X, Y, VFCINDEX, CORRECTINDEX)
%   only plots the ture positives with blue lines, false positives with red
%   lines, and false negatives with green lines. For visibility, it plots at
%   most NUMPLOT (Default value is 50) matches proportionately.
%   
% Input:
%   I1, I2: Tow input images.
%
%   X, Y: Coordinates of intrest points in I1, I2 respectively.
%
%   VFCIndex: Indexes preserved by VFC.
%
%   CorrectIndex: Ground truth indexes.
%
%   See also:: VFC(), FastVFC(), SparseVFC().

% Authors: Jiayi Ma ([email protected])
% Date:    04/17/2012

% Define the maximum number of matches to plot

%blue = true positive+true negative, green = false negative, red = false positive
NumPlot = 50;

TruePos = intersect(VFCIndex, CorrectIndex);%Ture positive
FalsePos = setdiff(VFCIndex, CorrectIndex); %False positive
FalseNeg = setdiff(CorrectIndex, VFCIndex); %False negative

NumPos = length(TruePos)+length(FalsePos)+length(FalseNeg);
if NumPos > NumPlot
    t_p = length(TruePos)/NumPos;
    n1 = round(t_p*NumPlot);
    f_p = length(FalsePos)/NumPos;
    n2 = ceil(f_p*NumPlot);
    f_n = length(FalseNeg)/NumPos;
    n3 = ceil(f_n*NumPlot);
else
    n1 = length(TruePos);
    n2 = length(FalsePos);
    n3 = length(FalseNeg);
end

per = randperm(length(TruePos));
TruePos = TruePos(per(1:n1));
per = randperm(length(FalsePos));
FalsePos = FalsePos(per(1:n2));
per = randperm(length(FalseNeg));
FalseNeg = FalseNeg(per(1:n3));

interval = 20;
WhiteInterval = 255*ones(size(I1,1), interval, 3);
figure;imagesc(cat(2, I1, WhiteInterval, I2)) ;
hold on ;
line([X(FalsePos,1)'; Y(FalsePos,1)'+size(I1,2)+interval], [X(FalsePos,2)' ;  Y(FalsePos,2)'],'linewidth', 1, 'color', 'r') ;
line([X(FalseNeg,1)'; Y(FalseNeg,1)'+size(I1,2)+interval], [X(FalseNeg,2)' ;  Y(FalseNeg,2)'],'linewidth', 1, 'color', 'g') ;
line([X(TruePos,1)'; Y(TruePos,1)'+size(I1,2)+interval], [X(TruePos,2)' ;  Y(TruePos,2)'],'linewidth', 1, 'color', 'b') ;
axis equal ;axis off  ; 
drawnow;

实验数据:TestData.rar

实验结果

criterion =

    0.9259
    1.0000
    0.9604
    0.9615
    0.8125

Gaussian field consensus论文解读及MATLAB实现_第16张图片

六、Reference

  • Gaussian field consensus: A robust nonparametric matching method for outlier rejection

你可能感兴趣的:(Gaussian field consensus论文解读及MATLAB实现)