2019.10.11考试解题报告

总结

期望得分:\(100 + 100 + 0\)
实际得分:\(100 +96 + 0\)(原因是\(T2\)满分\(96\))

期望得分与实际得分一致,也算是没写挂了
但是在时间的安排上不是很合理,在\(T1\)上花了很长时间,因为发现自己的线段树\(so\)慢,之后导致去做\(T3\)的时候时间已经不多了
以后还是要合理安排时间


思路

T1

题意:
一个长度为\(n\)的数组,有\(q\)次操作,操作包括三种
分别是单点加,单点修改与整体修改,每次操作之后都要输出数组中所有元素的和。

打了个线段树发现有点慢……裸的线段树根本不行,甚至会\(MLE\)
而且读入还是有点慢……
然后惊人地发现不用线段树就可以……

发现答案不难统计,所以每次进行简单的调整就可以了
用一个数组\(b\)表示每个位置的层数
定义\(sjp\)代表最最先进的那一层(就是当前层。。)

每次3操作都让\(sjp++\),并将\(now\)赋值为\(y\)
如果进行\(1、2\)操作时层数不是\(sjp\),就把\(x\)这个位置的值赋为\(now\)
并把\(b[x]\)赋值为\(sjp\),表示当前\(x\)这个位置的层数已经是\(sjp\)了……
这样一次次更新就行了

T2

题意:
给你一张\(n\)个点\(m\)条边,且边权全为正的有向图,求这张图的最长路,并保证存在最长路

20分

可以试下神奇的最短路算法\(floyd\)
时间复杂度\(O(n^3)\),可以过前\(20\%\)

40分

可以试下\(N\)遍堆优化\(dijkstra\)或者\(SPFA\)(关于\(SPFA\),他死了)

100分

既然保证最长路存在,并且边权全为正,就表明了这张图是个有向无环图(\(DAG\)),所以我们就可以用拓扑排序 + \(DP\)来解决

T3

题意:
给你一张\(n\)个点\(m\)条边的无向图,求图上与每个点最短距离之和最小与最大的两个点,点可以在边上任意位置,问这两个点与每个点最短距离之和是多少。(可以不为整数)

考场上来不及做,也不会做的一道神题

老师下发的题解上说这是一道真正考察选手综合算法能力的题目

但我不会,菜死了


代码

T1

死慢死慢的线段树

//知识点:真·线段树 
/*
By:Loceaner
*/
#include 
#include 
#include 
using namespace std;

inline int read() {
    char c = getchar();
    int x = 0, f = 1;
    for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
    for( ; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + (c ^ 48);
    return x * f;
}

const int N = 1e7 + 11;

#define lson rt << 1
#define rson rt << 1 | 1

struct node {
    int l, r, sum, lazy; 
} t[N << 2];

long long ans = 0;

inline void pushup(int rt) {
    t[rt].sum = t[lson].sum + t[rson].sum;
}

void build(int l, int r, int rt) {
    t[rt].l = l, t[rt].r = r;
    if(l == r) return;
    int mid = (l + r) >> 1;
    build(l, mid, lson);
    build(mid + 1, r, rson);
}

void bian(int mb, int x, int rt) {//变! 
    if(t[rt].l == mb && t[rt].r == mb) {
        t[rt].sum = x;
        return;
    }
    int mid = (t[rt].l + t[rt].r) >> 1;
    if(mb <= mid) bian(mb, x, lson);
    else bian(mb, x, rson);
    pushup(rt);
}

void jia(int mb, int x, int rt) {//加! 
    if(t[rt].l == mb && t[rt].r == mb) {
        t[rt].sum += x;
        return;
    }
    int mid = (t[rt].l + t[rt].r) >> 1;
    if(mb <= mid) jia(mb, x, lson);
    else jia(mb, x, rson);
    pushup(rt);
}

void update(int L, int R, int x, int rt) {
    if(t[rt].l == t[rt].r) {
        t[rt].sum = x;
        return;
    }
    int mid = (t[rt].l + t[rt].r) >> 1;
    if(mid >= R)  update(L, R, x, lson);
    else if(L > mid)  update(L, R, x, rson);
    else {
        update(L, mid, x, lson);
        update(mid + 1, R, x, rson);
    }
    pushup(rt);
}

void find(int L, int R, int rt) {
    if(t[rt].l == L && t[rt].r == L){
        ans += t[rt].sum;
        return;
    }
    int mid = (t[rt].l + t[rt].r) >> 1;
    if(mid >= R)  find(L, R, lson);
    else if(L > mid)  find(L, R, rson);
    else {
        find(L, mid, lson);
        find(mid + 1, R, rson);
    }
    pushup(rt);
}

int n, q;

int main() {
    freopen("segmenttree.in", "r", stdin);
    freopen("segmenttree.out", "w", stdout);
    n = read(), q = read();
    build(1, n, 1);
    while(q--) {
        int opt = read(), x, y;
        if(opt == 1) {
            x = read(), y = read();
            bian(x, y, 1);
        }
        else if(opt == 2) {
            x = read(), y = read();
            jia(x, y, 1);
        }
        else if(opt == 3) {
            y = read();
            update(1, n, y, 1);
        }
        ans = 0;
        find(1, n, 1);
        cout << ans << '\n';
    }
    return 0;
}

玄学的\(O(q)\)满分做法

/*
By:Loceaner 
*/
#include 
using namespace std;

typedef long long ll;

const int MAXSIZE=50000020; 
const int N = 1e7 + 11;

int bufpos;
char buf[MAXSIZE];

int re() { 
    int val = 0;
    for(; buf[bufpos] < '0' || buf[bufpos] > '9'; bufpos ++);
    for(; buf[bufpos] >= '0' && buf[bufpos] <= '9'; bufpos ++)
        val = val * 10 + buf[bufpos] - '0';
    return val;
}

int n, q, a[N], now, b[N], sjp;
ll sum = 0;

int main(){
    freopen("segmenttree.in", "r", stdin);
    freopen("segmenttree.out", "w", stdout);
    buf[fread(buf, 1, MAXSIZE, stdin)] = '\0';
    bufpos = 0;
    n = re(); q = re();
    for(int i = 1; i <= q; i ++){
        int opt = re();
        if(opt == 1){
            int x = re(), y = re();
            if(b[x] < sjp) a[x] = now, b[x] = sjp;
            //a[x] = y;
            sum += y - a[x];
            a[x] = y;
            cout << sum << '\n';
        }
        if(opt == 2){
            int x = re(), y = re();
            if(b[x] < sjp) a[x] = now, b[x] = sjp;
            sum += y;
            a[x] += y;
            cout << sum << '\n';
        }
        if(opt == 3){
            int y = re();
            now = y;
            sjp++;
            sum = y * n;
            cout << sum << '\n';
        }
    }
    return 0;
}

T2

考场满分代码

#include 
using namespace std;

typedef long long ll;
const int MAXSIZE=50000020; //读入缓存大小,不要改动 
const int N = 1e6 + 11;

int bufpos;
char buf[MAXSIZE];

int re(){ //读入一个int类型的整数 
    int val = 0;
    for(; buf[bufpos] < '0' || buf[bufpos] > '9'; bufpos ++);
    for(; buf[bufpos] >= '0' && buf[bufpos] <= '9'; bufpos ++)
        val = val * 10 + buf[bufpos] - '0';
    return val;
}

struct node {
    int to, nxt, val;
} e[N << 1];

int n, m;
int head[N], tot;
ll f[N], ans;

inline void add(int from, int to, int val) {
    e[++tot].val = val;
    e[tot].to = to;
    e[tot].nxt = head[from];
    head[from] = tot;
}

queue  q;
int ind[N], seq[N], cnt;

signed main(){
    freopen("lpsa.in", "r", stdin);
    freopen("lpsa.out", "w", stdout);
    buf[fread(buf, 1, MAXSIZE, stdin)] = '\0';
    bufpos = 0;
    n = re(); m = re();
    for(int i = 1; i <= m; i ++){
        int u = re(), v = re(), w = re();
        add(v, u, w);
        ind[u]++;
    }
    for(int i = 1; i <= n; i++) if(!ind[i]) q.push(i);
    while(!q.empty()) {
        int u = q.front();
        q.pop();
        seq[++cnt] = u;
        for(int i = head[u]; i; i = e[i].nxt) {
            int v = e[i].to;
            --ind[v];
            if(ind[v] == 0) q.push(v);
        } 
    }
    for(int i = 1; i <= cnt; i++) {
        int now = seq[i];
        for(int j = head[now]; j; j = e[j].nxt) {
            int to = e[j].to;
            f[to] = max(f[to], f[now] + e[j].val);
        }
        ans = max(f[now], ans);
    }
    cout << ans << '\n';
    return 0;
}

T3

考场代码没脸放

神奇的正解

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define lc k << 1
#define rc k << 1 | 1

#define inf 0x3f3f3f3f
 
using namespace std;
typedef long long ll;
const ll mod = 1e9 + 7;

struct edge{
    int to, nxt;
    ll w;
}e[100005];

int h[1005], cnt;

void addedge(int x, int y, ll w){
    cnt++; e[cnt].to = y; e[cnt].w = w; e[cnt].nxt = h[x]; h[x] = cnt;
    cnt++; e[cnt].to = x; e[cnt].w = w; e[cnt].nxt = h[y]; h[y] = cnt;
}

int n, m;
ll dis[1005][1005]; int vis[1005];
ll sum[1005];
void spfa(int s){
    memset(vis, 0, sizeof(vis));
    queue q; dis[s][s] = 0; vis[s] = 1; q.push(s);
    while(!q.empty()){
        int x = q.front(); q.pop();
        for(int i = h[x]; i; i = e[i].nxt){
            if(dis[s][e[i].to] > dis[s][x] + e[i].w){
                dis[s][e[i].to] = dis[s][x] + e[i].w;
                if(!vis[e[i].to]) vis[e[i].to] = 1, q.push(e[i].to);
            }
        }
        vis[x] = 0;
    }
}

double mn = 1e17, mx = 0;
double st[1005];
void sol(int x, int y, ll w){
    double res = sum[x];
    for(int i = 1; i <= n; i ++){
        st[i] = 1.0 * (dis[y][i] - dis[x][i] + w) / 2.0;
    }
    sort(st + 1, st + n + 1);
    double d = 0, tmp; ll k = n;
    for(int i = 1; i <= n; i ++){
        tmp = st[i] - d;
        res = res + tmp * k;
        d = st[i]; k -= 2;
        mn = min(mn, res);
        mx = max(mx, res);
    }
}

int main(){
    freopen("foodshop.in", "r", stdin);
    freopen("foodshop.out", "w", stdout);
    
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= n; j ++) dis[i][j] = 1e17;
    }
    for(int i = 1; i <= m; i ++){
        int x, y; ll w;
        scanf("%d%d%lld", &x, &y, &w);
        addedge(x, y, w);
    }
    for(int i = 1; i <= n; i ++){
        spfa(i);
    }
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= n; j ++){
            sum[i] += dis[i][j];
        }
        mn = min(mn, (double)sum[i]);
        mx = max(mx, (double)sum[i]);
    }
    for(int x = 1; x <= n; x ++){
        for(int i = h[x]; i; i = e[i].nxt){
            sol(x, e[i].to, e[i].w);
        }
    }
    printf("%.1lf %.1lf\n", mn, mx);
    return 0;
}

你可能感兴趣的:(2019.10.11考试解题报告)