- 求是网:“内卷式”竞争的突出表现和主要危害有哪些?
加百力
财经研究科技知识人工智能大数据
"内卷式"竞争主要表现为:企业层面的低价竞争、同质化竞争和营销"逐底竞争";地方政府层面的违规优惠政策、盲目重复建设和设置市场壁垒。危害体现在三个层面:微观上导致"劣币驱逐良币",损害消费者利益;中观上破坏行业生态,挤压产业链利润空间;宏观上扭曲资源配置,抑制创新活力。什么是“内卷式”竞争?概括其一般特征,是指经济主体为了维持市场地位或争夺有限市场,不断投入大量精力和资源,却没有带来整体收益增长的
- SQL注入与防御-第六章-3:利用操作系统--巩固访问
一、核心逻辑与价值“巩固访问”是SQL注入攻击的持久化控制阶段,通过篡改数据库权限、植入隐蔽后门(如“数据库rootkit”)、利用系统组件(如SQLServerSOAP端点),实现对数据库及关联服务器的长期控制,绕过常规防御检测,扩大攻击影响。二、技术实现与典型场景(一)数据库Rootkit植入(以Oracle为例)1.原理通过篡改数据库元数据、系统视图,隐藏恶意用户、权限或操作,类似操作系统R
- linux编辑器——vi/vim图解模式,命令速查
泓铮
linux编辑器vim
一、三模式编辑器图解(大学生期末不用细看)快速记忆:只要不知道干啥先按ESC回到初始状态——命令模式,修内容进编辑(微观),看全文进末行(宏观)vi功能+新功能=vim使用vi/vim命令格式方法:1.基本打开方式:vim文件路径这种方式会打开指定的文件,并进入Vim的命令模式。如果文件不存在,Vim会提示你创建它。2.打开文件并跳转到指定行:vim行号文件路径使用这种方式,Vim会打开指定的文件
- Python 强化学习算法实用指南(二)
原文:annas-archive.org/md5/e3819a6747796b03b9288831f4e2b00c译者:飞龙协议:CCBY-NC-SA4.0第六章:学习随机优化与PG优化到目前为止,我们已经探讨并开发了基于价值的强化学习算法。这些算法通过学习一个价值函数来找到一个好的策略。尽管它们表现良好,但它们的应用受限于一些内在的限制。在本章中,我们将介绍一类新的算法——策略梯度方法,它们通过
- 12 | 走向元宇宙:数字化工作与生活
_Rye_
元宇宙
专栏快接近尾声了。在之前的课程里,我们一直在用一个框架来概括元宇宙,那就是:元宇宙=立体互联网+价值互联网。这个公式可以帮助我们从宏观角度更好地理解元宇宙。当我们回归工作和生活,用更加个人化的角度来观察元宇宙时,我们可以换用另外一个等式:元宇宙=实体空间+数字空间。通过这个等式,我们可以看到,元宇宙将带给我们线上线下全面融合的数字生活。这一讲的讨论分成两个部分。首先,我们来看看自己周围的数字化发展
- 时尚搭配助手,深度解析用Keras构建智能穿搭推荐系统
忆愿
高质量领域文章keras人工智能深度学习机器学习python
文章目录引言:当算法遇见时尚第一章数据工程:时尚系统的基石1.1数据获取的多元化途径1.2数据预处理全流程1.2.1图像标准化与增强1.2.2多模态数据处理第二章模型架构设计:从分类到推荐2.1基础CNN模型(图像分类)2.2多任务学习模型(属性联合预测)第三章推荐算法核心3.1协同过滤与内容推荐的融合第四章系统优化4.1注意力机制应用第五章实战演练5.2实时推荐API实现第六章前沿探索:时尚AI
- KTO(Kahneman-Tversky Optimization)技术详解与工程实现
DK_Allen
大模型深度学习pytorch人工智能KTO
KTO(Kahneman-TverskyOptimization)技术详解与工程实现一、KTO核心思想KTO是基于行为经济学前景理论(ProspectTheory)的偏好优化方法,突破传统偏好学习需要成对数据的限制,仅需单样本绝对标注(好/坏)即可优化模型。其创新性在于:损失函数设计:将人类对"收益"和"损失"的非对称心理反应量化数据效率:无需构建偏好对(y_w>y_l),直接利用松散标注二、KT
- k8s深度讲解----宏观架构与集群之脑 - API Server 和 etcd
weixin_42587823
云原生kubernetes架构etcd
宏观架构与集群之脑-APIServer和etcd宏观架构:数据中心的操作系统在开始之前,让我们先建立一个高层视角。你可以将Kubernetes想象成一个管理整个数据中心的分布式操作系统。在这个操作系统中:控制平面(ControlPlane)就是它的“内核”,负责管理和决策。工作节点(WorkerNodes)就是它的“CPU和内存”,是真正运行应用程序的地方。我们常用的kubectl就是与这个“内核
- 智链全球:跨境券商交易系统技术白皮书2025
Ashlee_guweng22346
架构区块链系统架构需求分析源代码管理Javaphp
——券商机构应对高波动市场的技术进化与跨境金融新生态构建一、宏观环境:关税风暴与跨境金融新态势黑天鹅事件催化市场波动特朗普政府宣布自8月1日起实施最高70%的新关税,针对欧盟、日本等贸易伙伴单边发难,加剧全球供应链成本重构。此政策叠加OPEC+增产(54.8万桶/日)、中东冲突等事件,导致风险资产剧烈波动:标普500期货下跌0.6%,现货黄金单日涨0.6%,铜价突破三个月新高(交易商抢在关税生效前
- 计算机网络(王道考研)笔记个人整理——第六章:应用层
onlyTonight
计算机网络计算机网络考研笔记
第六章:应用层点击上方专栏查看六章全部笔记个人笔记整理位置:个人笔记完整版b站视频:王道考研(2019版)概述应用层对应用程序的通信提供服务。应用层协议定义:应用程序交换的报文类型(请求or响应);各个报文类型的语法,如报文中的各个字段及其详细描述;字段的语义,即包含在字段中的信息的含义;进程何时、如何发送报文,以及对报文进行响应的规则。功能:文件传输、访问和管理;电子邮件;虚拟终端;查询服务和远
- 代码训练营DAY13 第六章 二叉树part01
_Coin_-
数据结构算法
理论基础二叉树种类存储方式遍历方式深度优先搜索&广度优先搜索深度:前序遍历、中序遍历、后序遍历(中间在前or中or后,左右顺序固定)广度:二叉树定义递归遍历(必须掌握)递归分析三步法1、确定递归函数的参数和返回值2、确定终止条件3、确定单层递归逻辑前序遍历144.二叉树的前序遍历-力扣(LeetCode)/***Definitionforabinarytreenode.*structTreeNod
- JAVA面试宝典 -《性能优化实战:从代码到架构的调优》
文章目录《性能优化实战:从代码到架构的调优》引言:性能优化是系统的“生命线”第一部分:代码级优化(微观层面)1️⃣常见性能“坑”2️⃣GC调优入门3️⃣性能分析工具推荐️第二部分:数据库性能优化1️⃣SQL优化策略2️⃣利用缓存“兜底”3️⃣MyBatisPlus实例优化第三部分:服务层调优(中观层面)1️⃣接口耗时分析2️⃣异步与线程池优化3️⃣限流与熔断️第四部分:架构级优化(宏观层面)1️⃣
- 软件测试-修正判定条件覆盖(MCDC)的一些认识
鲸 Blue
软件测试软件测试职场和发展
修正判定条件覆盖(ModifiedCondition/DecisionCoverage即MC/DC)通过参照上图,我们首先从宏观的角度上理解MCDC在软件测试中的分支。软件测试软件工程开发中中必不可少且非常重要的一部分,软件测试从是否执行代码来看可分为两种测试方法:静态测试和动态测试.静态测试是指不用执行程序的测试,它主要采取方案——代码走查、技术评审、代码审查的方法对软件产品进行测试,通俗来说就
- 你真的懂文件吗?从磁盘、设备到文本与二进制的深度解析
资料合集下载链接:https://pan.quark.cn/s/472bbdfcd014在日常的电脑使用中,我们每天都在和“文件”打交道:Word文档、MP3音乐、照片、应用程序……我们创建、保存、打开、删除它们。但你是否曾停下来想过,这些我们习以为常的文件,在计算机的底层究竟是什么样的存在?今天,让我们跟随课堂的脚步,一起深入探索文件的本质,从宏观的分类到微观的存储,彻底搞懂计算机世界的基石——
- 系统、架构、结构思维辨析
深海科技服务
IT应用探讨架构大数据服务器linux程序人生
一、什么是系统、架构、结构思维系统式思维、架构式思维和结构化思维都是解决复杂问题的重要思维方式,它们之间既有联系又有区别。1.系统式思维(SystemsThinking)定义:系统式思维是一种宏观的、整体性的思考方式,它关注事物作为一个整体的运作方式,以及其组成部分之间如何相互关联、相互影响。它强调理解事物内部的结构、模式、周期和反馈回路,而不是孤立地看待某个问题或某个部分。核心思想:整体性:看到
- 个人财务管理中的行为偏差与系统化防御框架
知识前端
个人财务管理中的行为偏差与系统化防御框架一、核心认知偏差机制flowchartTB支付媒介[支付媒介属性]-->神经激活-->行为输出subgraph神经经济学基础现金支付-->脑岛激活[岛叶皮质激活]-->消费抑制电子支付-->伏隔核激活[伏隔核多巴胺释放]-->消费促进end支付脱敏效应神经学证据:fMRI显示电子支付决策时间比现金快0.8秒(《NatureHumanBehaviour》202
- 【Statsmodels和SciPy介绍与常用方法】
机器学习司猫白
scipystatsmodels统计
Statsmodels库介绍与常用方法Statsmodels是一个强大的Python库,专注于统计建模和数据分析,广泛应用于经济学、金融、生物统计等领域。它提供了丰富的统计模型、假设检验和数据探索工具,适合进行回归分析、时间序列分析等任务。本文将介绍Statsmodels的核心功能,并通过代码示例展示其常用方法。Statsmodels简介Statsmodels建立在NumPy和SciPy的基础上,
- 陈强《计量经济学及Stata应用》学习笔记——持续更新
WangSoooCute
学习笔记
1导论1.1什么是计量经济学econometrics几种关系:相关关系、因果关系、逆向因果关系reversecausality、双向因果关系被解释变量dependentvariable解释变量explanatoryvariable=regressor=自变量independentvariable=协变量covariateunobservable的误差项errorterm=随机扰动项stochast
- 通信算法之278:数据链/自组网通信设备--MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码--1.系统指标需求及帧结构设计
秋风战士
无线通信基带处理算法MATLAB仿真软件无线电算法无人机经验分享
MIMO(2T2R)-OFDM系统系列–实际工程应用算法代码第一章:系统指标需求拆解分析第二章:通信系统帧结构设计和OFDM参数设计第三章:通信业务速率设计及理论解调门限第四章:同步序列设计及同步性能仿真验证第五章:数据业务设计及性能仿真验证第六章:信道模型设计第七章:接收关键算法设计及仿真验证第八章:其它待补充本文目录MIMO(2T2R)-OFDM系统系列--实际工程应用算法代码一、实际项目:系
- MapReduce数据处理过程2万字保姆级教程
大模型大数据攻城狮
mapreduce大数据yarncdhhadoop大数据面试shuffle
目录1.MapReduce的核心思想:分而治之的艺术2.HadoopMapReduce的架构:从宏观到微观3.WordCount实例:从代码到执行的完整旅程4.源码剖析:Job.submit的魔法5.Map任务的执行:从分片到键值对6.Shuffle阶段:MapReduce的幕后英雄7.Reduce任务的执行:从数据聚合到最终输出8.Combiner的魔法:提前聚合的性能利器9.Partition
- 深入 Go 语言垃圾回收:从原理到内建类型 Slice、Map 的陷阱以及为何需要 strings.Builder
go垃圾回收
本文是2025-0526-go-gc.md的续篇。在理解了Go垃圾回收(GarbageCollection,GC)的宏观设计,包括并发标记清扫、三色标记法以及混合写屏障等核心机制之后,一个自然而然O问题是:这些通用的GC原理是如何与Go语言内建(built-in)的数据结构(如切片、映射等)协同工作的?这些我们日常使用的工具,其内存的生命周期管理背后又有哪些值得注意的细节?本文将作为续篇,深入探讨
- reveiw of test --welcome www.1maitao.com
从0到1的技术进阶
数据结构算法出版网络生活
--welcomewww.1maitao.comA数学的复习:1.最好能在7月前开始,如果你基础不是很好,又想在数学多拿分的话。2.课本很重要,08和09的题已经充分说明了基础的重要性,最好在5——6月把两册高数书及例题过两遍,有个宏观的把握,拿到题,就知道是在考什么。3.参考书的选择:个人觉得李永乐那本复习全书更注重基础,更贴近这2年的考研风格。全书中线性代数那100多页讲得超好。4.复习进度:
- 真题训练1-算法思维训练
不懂的浪漫
数据结构与算法算法题
真题训练1-算法思维训练文章目录真题训练1-算法思维训练前言项目环境例题1:斐波那契数列例题2:判断一个数组中是否存在某个数参考前言第十四章《通用解题的方法论》我们讨论了解题的方法论,宏观上可以分为以下4个步骤:复杂度分析,估算问题中的复杂度的上限和下限。定位问题,根据问题类型,确定采用何种算法思维。数据操作分析,根据增、删、查和数据顺序关系选择合适的数据结构,利用空间换时间的思想。编码实现。本章
- 股市是否会持续下跌?
股票程序化交易接口
量化交易股票API接口Python股票量化交易股市下跌趋势影响因素投资者情绪股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>经济形势对股市的影响宏观经济数据的作用宏观经济数据能反映整体经济的健康状况。像GDP增长率,如果持续走低,企业盈利可能受到影响,从而影响股票价格。例如在经济衰退期,企业营收减少,成本相对增加,利润空间被压缩。这会使投资者对企业前景担忧
- 计算机组成原理知识点汇总(考研用)——第六章:总线
happy19991001
计算机组成原理
计算机组成原理知识点汇总(考研用)——第六章:总线 本文参考于《2021年计算机组成原理考研复习指导》(王道考研),《计算机组成原理》思维导图:文章目录计算机组成原理知识点汇总(考研用)——第六章:总线6.总线6.1总线概述 6.1.1总线基本概念 1.总线的定义 2.总线设备 3.总线特性 4.总线的猝发传输方式 6.1.2总线的分类 1.片内总线 2.系统总线 3.通信总线 6.
- 【深入理解SpringCloud微服务】深入理解nacos配置中心(一)——宏观理解nacos配置中心原理
黄俊懿
springcloud微服务java架构分布式springbootnacos
【深入理解SpringCloud微服务】深入理解nacos配置中心(一)——宏观理解nacos配置中心原理简单介绍原理分析客户端启动服务端启动配置新增或修改客户端监听配置变更并刷新nacos既是一个注册中心也是一个配置中心,它是二合一的。作为注册中心的原理和源码,前面的文章已经介绍过,今天开始分析nacos作为配置中心的原理和源码。简单介绍nacos配置中心的作用就是在微服务架构中负责集中管理各个
- MyISAM和InnoDB的区别分析
咖啡啡不加糖
javamysql数据库
对于每一位Java开发者而言,MySQL无疑是我们最亲密的伙伴之一。而在使用MySQL时,我们常常会遇到一个经典问题:存储引擎该如何选择?其中,MyISAM和InnoDB作为两大最主流的存储引擎,它们之间的区别与联系,关乎数据库设计与性能优化的关键所在。1.核心区别概览在深入细节之前,我们先通过一个表格,宏观地了解MyISAM与InnoDB的核心区别。特性MyISAMInnoDB事务支持不支持支持
- 【PyTorch】PyTorch中张量(Tensor)微分操作
咸鱼鲸
PyTorchpytorch人工智能python
PyTorch深度学习总结第六章PyTorch中张量(Tensor)微分操作文章目录PyTorch深度学习总结前言一、torch.autograd模块二、主要功能和使用方法1.张量的requires_grad属性2.backward()方法3.torch.no_grad()上下文管理器三、函数总结前言上文介绍了PyTorch中张量(Tensor)的计算操作,本文将介绍张量的微分(torch.aut
- 本周沪铝想法
落雪财神意
人工智能大数据期股
核心逻辑:低库存支撑与淡季需求疲软博弈,宏观情绪助推高位震荡一、成本下移VS价格韧性成本端与价格表现呈现出不同态势。成本端方面,氧化铝现货价格在本周持续下跌,山东地区均价降至3090元/吨,环比下降1.3%,河南地区也跌至3100元/吨,环比下降0.3%。这主要是因为全国氧化铝运行产能维持较高水平,开工率达到79.61%,且已连续5周复产,再加上电解铝企业氧化铝原料库存处于低位,仅为209.8万吨
- 鲲鹏翱翔,逐梦前行
whu_lee
#华为鲲鹏#华为计算#鲲鹏开发者计划2025
在华为计算举办的KADC大会上,我有幸听闻了“鲲鹏开发者计划2025”发布的消息,这无疑为开发者们开辟了一片崭新的天地,也让我心潮澎湃,迫不及待地投身其中,开启了一场充实而富有成就感的学习之旅。大会结束后,我便一头扎进了相关知识的海洋。先是仔细研究了“鲲鹏开发者计划2025”,从计划的宏观目标到具体的实施路径,每一个细节都让我眼前一亮,仿佛看到了未来技术发展的新方向和新机遇。紧接着,我开启了在线学
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理