- YOLOv10 全面升级解析:关键改进点一文掌握
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能目标检测深度学习
✅YOLOv10改进点详解一、前言YOLOv10是由Ultralytics团队在2024年提出的新一代目标检测模型,在保持高精度的同时进一步优化了部署效率和推理速度。它的核心改进包括:改进方向内容✅非解耦头轻量化设计消除非必要分支,减少冗余计算✅Anchor-Free模式默认启用,无需手动设置anchor✅TAL+DFLLoss提升边界框回归质量✅多任务统一接口detect/segment/pos
- 噪声预测 vs. 数据预测:扩散模型中的目标函数选择与生成表现对比
观熵
扩散模型工程指南机器学习算法人工智能
噪声预测vs.数据预测:扩散模型中的目标函数选择与生成表现对比关键词:噪声预测、数据重建、MSELoss、ELBO、score-basedmodeling、DDPM、EDM、训练目标、采样策略摘要:扩散模型的训练目标设计直接影响模型收敛速度、生成质量与采样路径稳定性。最初的DDPM采用了预测添加噪声ε的方法,但近年来诸如EDM(ElucidatedDiffusionModels)等模型开始转向对原
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-loss.py
红色的山茶花
YOLO笔记深度学习
loss.pyultralytics\utils\loss.py目录loss.py1.所需的库和模块2.classVarifocalLoss(nn.Module):3.classFocalLoss(nn.Module):4.classDFLoss(nn.Module):5.classBboxLoss(nn.Module):6.classv8DetectionLoss:7.classE2EDetec
- 微调大语言模型后,如何评估效果?一文讲清
茫茫人海一粒沙
人工智能
在做大语言模型(LLM)微调时,“怎么判断模型调得好不好”是必须回答的问题。无论是在研究、项目落地,还是面试中,评估方法都不能停留在“训练loss降了”这么简单。本文从评估目标、技术指标、业务适配、实战建议四个维度,讲清楚微调后的模型评估怎么做,为什么这么做。一,评估前,先搞清楚目标不同的微调目的,评估方式也不同:✅精调任务能力:判断模型是否更好完成分类、问答、摘要、代码生成等任务。✅领域适应:关
- 人脸识别常用数据集和Loss
JL_Jessie
人脸识别深度学习
人脸识别数据集数据集的noise对训练效果的影响很大!很长一段时间MegaFace的效果都上不去,就是因为数据集噪声的原因。而且自己在训练人脸的时候,如果不对数据集的噪声和属性有一点了解,对训练结果可能会有误判,甚至越训练越差…在选择数据集的时候不要一味求大,有的时候选择一个noise比例极高的大数据集,效果还不如选择一个clean的小数据集呢,可以参见这篇论文TheDevilofFaceReco
- 大数据智能风控核心:模型
johnny233
读书笔记大数据
概述模型线性判别分析方法,SirRonaldFisher最早提出模型评分的概念。个人FICO模型信用分。巴塞尔委员会发布巴塞尔Ⅱ协议,推出内部评级法(InternalRatingBasedApproach,IRB)。IRB综合考虑客户评级和债项评级,通过违约概率(ProbabilityofDefault,PD)、违约损失率(LossGivenDefault,LGD)、违约风险暴露(Exposure
- 第 3 章:神经网络如何学习
鱼摆摆拜拜
神经网络学习人工智能
第3章:神经网络如何学习在第二章中,我们详细了解了神经网络的静态结构:由神经元组成的层,以及连接它们的权重和偏置。现在,我们将进入整个教程最核心的部分:神经网络是如何从数据中"学习"的?这个学习过程是一个动态的、不断调整自身参数以求更佳预测的过程。我们将通过四个关键概念来揭示这个秘密:前向传播(ForwardPropagation):数据如何通过网络产生一个预测?损失函数(LossFunction
- 微调大语言模型(生成任务),怎么评估它到底“变好”了?
茫茫人海一粒沙
语言模型人工智能自然语言处理
随着大语言模型(如GPT、LLaMA)的广泛应用,越来越多团队开始基于它们做微调,定制符合自己业务需求的模型。微调虽能让模型更贴合任务,但评估是否真的“变好”却不是简单的事。本文将系统介绍微调过程中和微调完成后,如何科学有效地评估模型效果,帮助你用对指标,做出准确判断。一、微调时的评估:关注训练过程中的模型表现1.验证集Loss(ValidationLoss)微调训练时,我们会准备一部分数据作为验
- 【机器学习&深度学习】前馈神经网络(单隐藏层)
一叶千舟
深度学习【理论】机器学习深度学习神经网络
目录一、什么是前馈神经网络?二、数学表达式是什么?三、为什么需要“非线性函数”?四、NumPy实现前馈神经网络代码示例五、运行结果六、代码解析6.1初始化部分6.2前向传播6.3计算损失(Loss)6.4反向传播(手动)6.5更新参数(梯度下降)6.6循环训练七、训练过程可视化(思维图)八、关键问题答疑Q1:为什么需要隐藏层?Q2:ReLU是干嘛的?Q3:学习率怎么选?九、总结学习建议在机器学习中
- 【机器学习算法】XGBoost原理
一、基本内容基本内容:GBDT的基础上,在损失函数上加入树模型复杂度的正则项与GBDT一样,也是使用新的弱学习器拟合残差(当前模型负梯度,残差方向)GBDT损失函数Loss=∑i=1NL(yi,yit)Loss=\sum_{i=1}^{N}L(y_i,y_i^{t})Loss=i=1∑NL(yi,yit)XGboost损失函数Loss=∑i=1SL(yi,yit)+∑j=1NΩ(fj))Loss=
- 深度学习——第2章习题2-1分析为什么平方损失函数不适用于分类问题
笨小古
深度强化学习深度学习分类人工智能
深度学习——第2章习题2-1《神经网络与深度学习》——邱锡鹏2-1分析为什么平方损失函数不适用于分类问题。平方损失函数(QuadraticLossFunction)经常用在预测标签y为实数值的任务中,定义为L(y,f(x;θ))=12(y−f(x;θ))2\mathcal{L}\left(y,f(x;\theta)\right)=\frac{1}{2}\left(y-f(x;\theta)\rig
- ../aten/src/ATen/native/cuda/Loss.cu:115: operator(): block: [192,0,0], thread: [95,0,0] Assertion
weixin_42319617
深度学习人工智能
../aten/src/ATen/native/cuda/Loss.cu:115:operator():block:[192,0,0],thread:[95,0,0]Assertion`input_val>=zero&&input_val源代码上下文(计算损失函数):loss=nn.BCEWithLogitsLoss()(logit,truth.float())pos=(truth>0.5).fl
- YOLOv4 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv4正负样本划分详解一、前言在目标检测中,正负样本划分是训练过程中的关键环节,它决定了哪些预测框参与损失计算,从而影响模型的学习效果。YOLOv4在YOLOv3的基础上进行了改进,包括:使用CSPDarknet53主干网络;引入PANet特征融合结构;支持Mosaic数据增强;使用CIoULoss和DIoU-NMS;但在正样本划分逻辑上,YOLOv4保持了与YOLOv3类似的设计方式,并
- 深度学习笔记16-VGG-16算法-Pytorch实现人脸识别
boooo_hhh
深度学习机器学习pytorch
目录前言一、前期准备1.设置GPU2.导入数据3.划分数据集二、调用官方的VGG-16模型三、训练模型1.编写训练函数2.编写测试函数3.设置动态学习率4.正式训练四、结果可视化1.Loss与Accuracy图2.指定图片进行预测3.模型评估五、总结前言本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、前期准备1.设置GPU如果设备上支持GPU就使用GPU,否则使用CPUimport
- tensorflow GPU训练loss与val loss值差距过大问题
LXJSWD
tensorflow人工智能python
问题最近在ubuntugpu上训练模型,训练十轮,结果如下epoch,loss,lr,val_loss200,nan,0.001,nan200,0.002468767808750272,0.001,44.29948425292969201,0.007177405059337616,0.001,49.16984176635742202,0.012423301115632057,0.001,49.30
- Python训练营-Day37-早停策略和模型权重的保存
1.记录训练集的损失函数可以观察是否过拟合#记录损失值并更新进度条if(epoch+1)%200==0:losses.append(loss.item())epochs.append(epoch+1)#更新进度条的描述信息pbar.set_postfix({'Loss':f'{loss.item():.4f}'})2.模型保存和加载#保存模型参数torch.save(model.state_dic
- Day33 MLP神经网络的训练
cylat
python打卡神经网络人工智能深度学习python
目录一、PyTorch和cuda的安装二、查看显卡信息的命令行命令(cmd中使用)三、cuda的检查四、简单神经网络的流程1、数据预处理(归一化、转换成张量)2、模型的定义3、定义损失函数和优化器4、定义训练流程5、可视化loss过程一、PyTorch和cuda的安装后续完成深度学习项目中,主要使用的包为pytorch,所以需要安装,需要去配置一个新的环境。未来在复现具体项目时候,新环境命名最好是
- 【踩坑大全】TensorFlow的Loss出现Nan原因分析及解决方案
蚊子我们绝交吧
踩坑大全pythontensorflow人工智能深度学习
记录一次狗屎的经历背景是这样的模型是现成的,只是想加一个自定义的Loss在PyTorch上实现成功,并且效果很好TensorFlow中,没法使用类似PyTorch那样局部更改tensor值的操作(大概是下面这样),在网上查了一堆方案之后,感觉都不好用,就换了一种算法规避了这种操作indices=torch.tensor([2,4])value[indices]=torch.tensor([[1,2
- Learning to Incorporate Structure Knowledge for Image Inpainting
yijun009
图像修复论文
LearningtoIncorporateStructureKnowledgeforImageInpaintingMotivationMethods框架:AttentionLayerStructureEmbeddingLayerPyramidStructureLossExperimentreference原文链接:link.Motivation图像修复旨在用合理且充满细节的内容填充损坏的图像区域或
- MMDet实例分割loss_rpn_bbox为nan但其它loss正常的解决
MWHLS
pythonpythonpytorch深度学习人工智能
文章首发见博客:https://mwhls.top/4901.html。无图/格式错误/后续更新请见首发页。更多更新请到mwhls.top查看欢迎留言提问或批评建议,私信不回。昨天还以为这个月无活可整,没想到第二天就来事了,下个月还好久,留到下月发也不大好(º﹃º)。问题描述使用MMDetection训练实例分割,训练可执行,测试可执行,但loss_rpn_bbox为nan,loss_bbox却有
- Day14shap图绘制
m0_62568655
python训练营python
#作业1importshapimportxgboostimportpandasaspdX,y=shap.datasets.adult()model=xgboost.XGBClassifier(eval_metric='mlogloss').fit(X,y)explainer=shap.TreeExplainer(model)shap_values=explainer.shap_values(X)#
- 运维想转SRE?先了解这7个原则
站点可靠性工程,或SRE,是一种将运维问题视为软件问题的方法。这一概念最初由Google工程师BenTreynorSloss在2003年提出并描述。作为一门学科,站点可靠性工程(SRE)旨在维持特定系统的可用性、性能和效率。SRE难以界定。它是一种方法或学科,而不是一套具体的指令性任务,其形式会根据特定组织的需求而有所不同。幸运的是,有七项SRE原则可以帮助指导SRE团队取得成功。前言软件开发的大
- xilinx gt的RX EQ
xilinx的GT的接收均衡功能,是在高速信号传输的时候用来补偿通道损耗和抖动的。通过对信号频谱进行补偿,抵消信号传输过程中由于PCB走线、连接器、电缆等引起的高频衰减和失真,从而恢复信号的完整性,提高链路稳定性和性能。XilinxGT系列收发器(GTP、GTX、GTH、GTY、GTYP)的接收均衡(RXEqualization,RXEQ)是克服高速串行链路中信道损耗(ChannelLoss)的关
- 具身智能 - 推动通用机器人智能的新里程碑:AgiBot World 平台与 GO-1 模型深度解析
天机️灵韵
VLA具身智能人工智能机器人深度学习人工智能具身智能
机器人操作是人工智能与物理世界交互的核心能力,但长期以来受限于高质量数据的稀缺。近期,上海人工智能实验室与AgiBotInc.联合发布了AgiBotWorldColosseo——一个开源的大规模机器人操作平台,包含数据集、工具链与通用策略模型,旨在推动机器人智能向更通用、更灵活的方向发展。本文将从背景、数据集设计、模型架构与实验结果四部分,解析这一平台的创新与突破。一、背景:机器人学习的核心挑战传
- yolo模型精度提升策略
Summit-
YOLO人工智能机器学习
总结与行动建议立即行动:显著增加6种相似BGA的高质量、多样化训练数据(2倍以上是合理起点)。实施针对性数据增强:设计模拟BGA实际成像挑战(反光、模糊、视角变化)的增强方案。升级模型与损失函数:尝试引入注意力机制,将分类损失替换为FocalLoss,并使用CIoU/EIoU。优化训练策略:使用自适应优化器、学习率热身与余弦退火,进行充分长周期的训练(配合早停)。启动主动学习循环:持续收集模型在相
- 中国城市建成区数据集(1992-2020)V1.0
做科研的周师兄
数据集分享遥感数据集javascript数据分析大数据性能优化
时间分辨率:年空间分辨率:100m-1km共享方式:开放获取数据大小:1.45MB数据时间范围:1992-01-01—2020-12-31元数据更新时间:2022-10-19数据集摘要本数据集来源于论文:(1)He,C.,Liu,Z.,Tian,J.,&Ma,Q.,(2014).UrbanexpansiondynamicsandnaturalhabitatlossinChina:amultisca
- 零基础量化交易速成指南:Python语言的跳转语句
包含编程资料、学习路线图、源代码、软件安装包等!【[点击这里]】!在Python中,跳转语句用于改变程序的正常执行流程,在量化投资中常用于策略逻辑控制、错误处理和性能优化。以下是详细说明及实际应用示例:1.break语句:立即终止循环量化应用场景1)达到止损条件立即退出positions={'AAPL':1000,'TSLA':500}stop_loss=0.9#止损线90%forstock,va
- 目标检测我来惹1 R-CNN
吧啦吧啦吡叭卜
机器学习目标检测
目标检测算法:识别图像中有哪些物体和位置目标检测算法原理:记住算法的识别流程、解决问题用到的关键技术目标检测算法分类:两阶段:先区域推荐ROI,再目标分类regionproposal+CNN提取分类的目标检测框架RCNNFASTERRCNN端到端:一个网络,输入到输出:类别加位置yoloSSD目标检测的任务:分类原理:得到每个类别的概率,取最大概率CNN--卷积神经网络输入层+卷积、激活、池化+全
- python学习打卡day33
vijaycc
python学习打卡python学习开发语言
DAY33简单的神经网络知识点回顾:PyTorch和cuda的安装查看显卡信息的命令行命令(cmd中使用)cuda的检查简单神经网络的流程数据预处理(归一化、转换成张量)模型的定义继承nn.Module类定义每一个层定义前向传播流程定义损失函数和优化器定义训练流程可视化loss过程预处理补充:注意事项:1.分类任务中,若标签是整数(如0/1/2类别),需转为long类型(对应PyTorch的tor
- 自动混合精度(AMP)训练在低版本显卡上的使用问题
shangjg3
Pytorch人工智能
AMPtrainingonNVIDIAGeForceGTX1660SUPERGPUmaycauseNaNlossesorzero-mAPresults,soAMPwillbedisabledduringtraining.这个警告提示表明在NVIDIAGeForceGTX1660SUPER显卡上使用自动混合精度(AMP)训练可能导致损失变为NaN或mAP结果为零,因此训练过程中将自动禁用AMP。以下
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro