机器人视觉行人跟随中的extract+match feature

机器人行人跟随ros包中加入图像特征提取和特征匹配,提取surf特征,匹配方法是快速最近邻近似搜索flann。

直接上代码:(有问题可以交流~)

/******************************************************************************
*
* The MIT License (MIT)
*
* Copyright (c) 2018 Bluewhale Robot
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Author: Randoms
*******************************************************************************/

#include "tracking_node.h"

using namespace cv;
using namespace std;
using namespace XiaoqiangTrack;

sensor_msgs::Image last_frame;
XiaoqiangTrack::Tracker *tracker = NULL;
Rect2d body_rect;
ros::Publisher image_pub;
ros::Publisher target_pub;
std::mutex update_track_mutex;
int track_ok_flag = 0;
cv::Rect2d previous_body_rect;
cv::Rect2d body_track_rect;

sensor_msgs::Image get_one_frame() { return last_frame; }

void update_frame(const sensor_msgs::ImageConstPtr &new_frame) //更新帧
{
  last_frame = *new_frame;
  cv_bridge::CvImagePtr cv_ptr =
      cv_bridge::toCvCopy(new_frame, "bgr8"); //图像格式转换
  cv::Mat cv_image = cv_ptr->image;
  if (tracker == NULL)
    return;
  unique_lock lock(update_track_mutex);
  previous_body_rect = body_rect;//将检测到的当前rect保存为previous_body_rect
  track_ok_flag = tracker->updateFrame(cv_image, body_rect);
  cv::rectangle(cv_image, body_rect, cv::Scalar(0, 255, 0));
  image_pub.publish(cv_ptr->toImageMsg());
  xiaoqiang_track::TrackTarget target;
  target.x = body_rect.x + body_rect.width / 2;
  target.y = body_rect.y + body_rect.height / 2;
  target.width = body_track_rect.width;
  target.height = body_track_rect.height;
  if (track_ok_flag == 0) {
    // send stop
    target.x = 0;
    target.y = 0;
  }
  target_pub.publish(target);//target.x,target.y是跟踪的点的坐标,kalman...
}

int main(int argc, char **argv) {
  ros::init(argc, argv, "xiaoqiang_track_node"); // ros节点初始化
  //在一个节点中开辟多个线程,构造时可以指定线程数如(4),AsyncSpinner有start()和stop()函数
  ros::AsyncSpinner spinner(4);
  spinner.start();
  ros::NodeHandle private_nh("~");
  ros::Publisher talk_pub = private_nh.advertise("text", 10);
  image_pub = private_nh.advertise("processed_image", 10);
  target_pub = private_nh.advertise("target", 10);
  int watch_dog;
  private_nh.param("watch_dog", watch_dog, 2);
  ros::Subscriber image_sub = private_nh.subscribe("image", 10, update_frame);
  PoseTracker *client;
  std::string pose_tracker_type;
  ros::param::param("~pose_tracker", pose_tracker_type, "");
  if (pose_tracker_type == "baidu") //判断跟踪类型:baidu track or body track
  {
    client = (PoseTracker *)new BaiduTrack(private_nh);
  } else if (pose_tracker_type == "body_pose") {
    client = (PoseTracker *)new BodyTrack(private_nh);
  } else {
    ROS_FATAL_STREAM("unknown pose tracker type " << pose_tracker_type);
    ROS_FATAL_STREAM("supported pose trakers are body_pose and baidu");
    exit(1);
  }

  std::string tracker_main_type;  //定义主跟踪类型
  std::string tracker_aided_type; //辅跟踪
  ros::param::param("~tracker_main", tracker_main_type, "");
  ros::param::param("~tracker_aided", tracker_aided_type, "");
  tracker = new XiaoqiangTrack::Tracker(tracker_main_type,tracker_aided_type); //设置跟踪器

  // 告诉用户站在前面
  std_msgs::String words;
  words.data = "请站在我前面";
  talk_pub.publish(words);
  // 提醒用户调整好距离
  sensor_msgs::Image frame = get_one_frame(); //得到一帧图像
  body_rect.x = -1;
  body_rect.y = -1;
  while (!ros::isShuttingDown()) {
    if (frame.data.size() != 0) {
      cv::Rect2d rect = client->getBodyRect(frame); //通过frame得到人体图像区域
      if (rect.x <= 1 || rect.y <= 1) {
        words.data = "我没有看到人,请站到我前面";
        talk_pub.publish(words);
      } else if (rect.x + rect.width / 2 > 440 ||
                 rect.x + rect.width / 2 < 200) {
        body_rect = rect;
        words.data = "请站到镜头中间来";
        talk_pub.publish(words);
      } else {
        body_rect = rect;
        words.data = "我看到人了,开始追踪";
        talk_pub.publish(words);
        break;
      }
    }
    sleep(1);
    frame = get_one_frame();
  }

  /*
  ¥经过分析代码,初步的想法是在这个位置加上特征提取方法和Opencv的特征匹配,思路是:
  -
  特征提取是从一帧图像中提取特征,想要提取的特征可以是ORB,FAST,SIFT,SURF等,上面的
  - frame = get_one_frame()是获取最新的一帧图像,return last_frame
  -
  那么对于这一帧图像抽取想要的特征信息,得到特征点,保存检测到的目标特征,之后用来与再次检测时的图像来做匹配
  -
  当然这里是做特征提取,匹配是在跟踪丢失后,再次启动检测识别时,识别到多个目标,进行匹配
  */
  /*fuck!sorry,i don't wanna say that,but i just lost everything i did the whole day because of clicking the 
  close table without save it! so let me start at the begining...
  */
  //begining extract feature
  int minHessian = 2000;
  SurfFeatureDetector detector(minHessian);

  vectorkeypoint1, keypoint2;

  //image1 = resize(frame, rect.x:(rect.x+rect.width), rect.y:(rect.y+rect.higth))

  IplImage *img1;
  CvRect rectInImage1;
  rectInImage1 = cvRect(rect.x, rect.y,rect.width, rect.height);
  CvSize size1;
  size1.width = rectInImage.width;
  size1.height = rectInImage.height;
  img1 = CvCreatImage(size1, frame->depth, frame->nChannels);
  CvSetImageROI(frame, rectInImage1);
  cvCopy(img1, frame);//img1是从frame上提取的目标框区域
  //检测特征点
  detector.detect(img1, keypoint1)

  //ending 

  // 告诉用户可以开始走了
  sensor_msgs::Image tracking_frame = get_one_frame();
  cv_bridge::CvImagePtr cv_ptr = cv_bridge::toCvCopy(tracking_frame, "bgr8");
  cv::Mat cv_image = cv_ptr->image;
  tracker->initTracker(cv_image, body_rect); // init
  int repeat_count = 0;
  int watch_dog_count = 0;
  while (ros::ok()) {
    usleep(1000 * 100); // 100ms
    // 如果位置不变,则认为可能丢失
    if (previous_body_rect == body_rect) {
      repeat_count += 100;
      if (repeat_count == 5 * 1000) //rect检测到的数据不变,且超过一定时间,判Lost
      {
        ROS_WARN_STREAM("Target not move, may lost");
        repeat_count = 0;
        track_ok_flag = 0; // heihei,flag=0 -> reset
      }
    } //这里判断跟丢
    else 
    {
      repeat_count = 0;
    }
    if (body_rect.width < 300 && body_rect.height < 300 && track_ok_flag == 2 &&
        body_rect.height > body_rect.width) //确认检测到的rect符合这些要求
    {

      watch_dog_count += 100;
      if (watch_dog_count <= watch_dog * 1000) // watch_dog=2
      {
        continue;
      }
    } //这里判断是否正确的给出rect
    watch_dog_count = 0; 

    tracking_frame = get_one_frame(); //再次获得newframe
    body_track_rect = client->getBodyRect(tracking_frame); // track

    //usr code begining 

  IplImage *img2;
  CvRect rectInImage2;
  ectInImage2 = cvRect(body_track_rect.x, body_track_rect.y,
                       ody_track_rect.width, body_track_rect.height);
  CvSize size2;
  size2.width = rectInImage2.width;
  size2.height = rectInImage2.height;
  img2 = CvCreatImage(size2, tracking_frame->depth, tracking_frame->nChannels);
  CvSetImageROI(tracking_frame, rectInImage2);
  cvCopy(img2, tracking_frame);//img2是从tracking_frame上提取的目标框区域
  //检测特征点
  detector.detect(img2, keypoint2);

  //计算特征点描述子
  SurfDescriptorExtractor extractor;
  Mat descriptor1, descriptor2;

  extractor.compute(img1, keypoint1, descriptor1);
  extractor.compute(img2, keypoint2, descriptor2);

  //使用flann匹配
  FlannBasedMatcher matcher;
  vectormatches;
  matcher.match(descriptor1, descriptor2, matches);//匹配结束

  double max_dist = 0;
  double min_dist = 100;
  for(int i = 0; i < descriptor1.rows; i++)
  {
    double dist = matches[i].distance;
    if(dist < min_dist)
      min_dist = dist;
    if(dist > max_dist)
      max_dist = dist;
  }//得到匹配结果中的最小距离和最大距离

  //处理匹配结果:判断当前匹配的对象是否为目标,仅根据最大最小匹配距离,能否进行判断?
  if(min_dist < 1.0)// get it~
  {
    tracking_frame = tracking_frame;
    body_track_rect = body_track_rect;
  }
  elseif(max_dist > 5.0)//abandon
  {
    continue;//继续下一帧匹配额
  }
  elseif((max_dist - min_dist) <  2.0)
  {
    tracking_frame = tracking_frame;
    body_track_rect = body_track_rect;
  }
  else 
  {
    continue;
  }
  //usr code ending

    if (body_track_rect.x <= 1 || body_track_rect.y <= 1) //识别到的rect.x / .y小于1后跟踪停止
    {
      tracker->stop();
    }
    else
    {
      {
        unique_lock lock(update_track_mutex);
        body_rect = body_track_rect;
        cv_bridge::CvImagePtr cv_ptr =
            cv_bridge::toCvCopy(tracking_frame, "bgr8");
        cv::Mat cv_image = cv_ptr->image;
        if (track_ok_flag == 0) //跟踪标志为0时跟踪复位
        {
          tracker->reset(cv_image, body_rect, true); // watch out the  reset praram
        }

        else
          tracker->reset(cv_image, body_rect); /// reset
      }
    }
  }
}

 

你可能感兴趣的:(机器人视觉行人跟随中的extract+match feature)