在所有的Java程序都是在JVM上运行的,程序运行必然是需要内存的,C++的策略是由程序员自己管理内存,自己维护,而Java则交给JVM来完成这些工作。所以为了提高运算效率,JVM会对数据进行了不同数据区域的划分,因为每一片区域都有特定的处理数据方式和内存管理方式。
目录
JVM内存结构
1、程序计数器
2、Java 虚拟机栈
3、堆Heap
4、方法区
5、直接内存
GC 垃圾回收
内存分配
对象已死?
垃圾收集算法
1、标记-清除算法
2、复制算法
3、标记-整理算法
4、分代收集算法
垃圾收集器
1.Serial收集器
2.ParNew收集器
3.Parallel Scavenge收集器
4.Serial Old收集器
5.Parallel Old收集器
6.CMS收集器
7.G1收集器
根据《Java虚拟机规范》的规定,JVM所管理的内存将会分为以下几个运行时数据区域:
程序计数器(Program Counter Register)是一块比较小的内存空间,它可以看作是当前线程所执行字节码的行号指示器。
程序计数器是线程私有的,即每个线程都会有一个,它随线程启动和结束而创建和销毁,与线程有相同的生命周期。
如果正在执行的是一个Java方法,程序计数器记录单是正在执行的虚拟机字节码指令的地址;如果是本地方法Native,则程序计数器的值为空。此内存区域是唯一一个Java虚拟机规范中没有规定任何内存溢出OutOfMemoryError情况的区域。
与程序计数器一样,Java虚拟机栈是线程私有,它的生命周期和线程相同,虚拟机栈描述的是Java方法执行的内存模型。关于Java内存模型的知识可见这篇文章Java内存模型与happens-before原则。
每个方法在执行的同时多会创建一个栈帧(Stack Frame),用于存储局部变量表、操作数栈、动态链接、方法出口等信息。
每一个方法被调用直至执行完成的过程就对应着一个栈帧在虚拟机中从入栈到出栈的过程。
在Java虚拟机规范中,对这个区域规定了两种异常情况:
局部变量表:
局部变量表存放了基本数据类型、对象引用和returnAddress类型(指向一条字节码指令的地址)。其中64位长度的long和double类型的数据会占用2个局部变量空间(slot)其余数据类型只占用1个。局部变量表所需的内存空间在编译期间完成分配。
静态方法和实例方法对应的局部变量表基本类似。但有以下区别:实例方法的表中,第一个位置存放的是当前对象的引用。
本地方法栈:
同虚拟机栈作用一样,只不过本地方法栈位虚拟机使用到的native方法服务。其中Sun HotSpot虚拟机把本地方法栈和虚拟机栈合二为一。
虚拟机栈具体的运行原理就不在内存结构介绍,详细可见这篇文章。
Java虚拟机所管理的内存中最大的一块,Java堆是所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例和数组,几乎所有的对象实例以及数组都在这里分配内存。
Java堆是垃圾收集器管理的主要区域,因此也被称作GC堆(Garbage Collected Heap).从垃圾回收的角度,由于现在收集器基本都采用分代垃圾收集算法,所以Java堆还可以细分为:新生代和老年代:在细致一点有:Eden空间、From Survivor、To Survivor空间等(后续会详细介绍)。
参数设置:-Xms参数设置最小值,-Xmx参数设置最大值,若-Xms=-Xmx,则可避免堆自动扩展。
方法区与 Java 堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做 Non-Heap(非堆),别名永久代(Permanent Generation)。
运行时常量池(Runtime Constant Pool)
运行时常量池也是方法区的一部分,Class文件中除了有类的版本、字段、方法、接口等信息外,还有一项是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后进入方法区的运行时常量池中存放。
运行时常量池相对于Class文件常量池的一个重要特征是具备动态性:即除了Class文件中常量池的内容能被放到运行时常量池外,运行期间也可能将新的常量放入池中,比如String类的 intern() 方法。
直接内存并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域。
在NIO中,引入了一种基于通道和缓冲区的I/O方式,它可以使用native函数直接分配堆外内存,然后通过一个存储在java堆中的DirectByteBuffer对象作为这块内存的引用进行操作。
垃圾回收需要弄清的几件事:
关于内存分配上文对JVM内存结构的介绍已经很清晰了,而Java 的自动内存管理主要是针对对象内存的回收和对象内存的分配。同时,Java 自动内存管理最核心的功能是 堆heap 内存中对象的分配与回收。
从上图可以看出堆内存的分为新生代、老年代和永久代。新生代又被进一步分为:Eden 区+Survior1 区+Survior2 区,它们 的空间大小比值一般为8 : 1 : 1。值得注意的是,在 JDK 1.8中移除整个永久代,取而代之的是一个叫元空间(Metaspace)的区域(永久代使用的是JVM的堆内存空间,而元空间使用的是物理内存,直接受到本机的物理内存限制)。
1.对象优先在eden区分配
目前主流的垃圾收集器都会采用分代回收算法,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
大多数情况下,对象在新生代中 Eden 区分配。当 Eden 区没有足够空间进行分配时,虚拟机将发起一次Minor GC。
垃圾收集触发条件:
2.大对象直接进入老年代
所谓的大对象就是需要大量连续内存空间的对象,最典型的大对象就是那种很长的字符串或者数组。
这样做是为了避免大对象分配内存时由于分配担保机制带来的复制而降低效率。
3.长期存活的对象将进入老年代
既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别那些对象应放在新生代,那些对象应放在老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。
如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1.对象在 Survivor 中每熬过一次 Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就会被晋升到老年代中。对象晋升到老年代的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。
4.动态对象年龄判定
为了更好的适应不同程序的内存情况,虚拟机不是永远要求对象年龄必须达到了某个值才能进入老年代,如果 Survivor 空间中相同年龄所有对象大小的总和大于 Survivor 空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无需达到要求的年龄。
5.空间分配担保
当对象生成在Eden区失败时,出发一次 Minor GC,先扫描Eden区中的存活对象,进入S0区,S0放不下的进入老年区,再扫描S1区,若存活次数超过阀值则进入老年区,其它进入S0区,然后S0和S1交换一次。
那么当发生 Minor GC时,JVM会首先检查老年代最大的可用连续空间是否大于新生代所有对象的总和,如果大于,那么这次 Minor GC是安全的,如果不大于的话,JVM就需要判断HandlePromotionFailure设置值是否允许空间分配担保。
JVM继续检查老年代最大的可用连续空间是否大于历次晋升到老年代的对象的平均大小,如果大于,则正常进行一次Minor GC,尽管有风险(因为判断的是平均大小,有可能这次的晋升对象比平均值大很多);如果小于,或者HandlePromotionFailure设置不允许空间分配担保,这时要进行一次Full GC。
新生代采用的是复制收集算法(后续详细介绍),S0和S1始终只是用其中一块内存区,当出现Minor GC后大部分对象仍然存活的话,就需要老年代进行分配担保,把survior区无法容纳的对象直接晋升到老年代。
那么这种空间分配担保的前提是老年代还有容纳的空间,一共有多少对象会活下来,在实际完成内存回收之前是无法明确知道的,所以只好取之前每次回收晋升到老年代对象容量的平均值大小作为经验值,与老年代的剩余空间比较,决定是否进行Full GC来让老年代腾出更多空间。
也就是说是有可能因为Minor GC存活的对象突增而导致担保失败,那就只好在失败后在重新发起一次Full GC,虽然失败了绕的圈子是挺大的,但这种冒险是值得的,因为它避免了Full GC过于频繁。
知道了虚拟机基本的内存分配,那垃圾回收策略的下一步就是判断哪些对象需要回收,即哪些对象还“存活”,哪些对象已经“死去”。
1.引用计数法
引用计数法实现起来非常简单,给对象中添加一个引用计数器,每当有一个地方引用它,计数器就加1;当引用失效,计数器就减1;任何时候计数器为0的对象就是不可能再被使用的。
虽然这个方法实现简单,效率高,但是目前主流的虚拟机中并没有选择这个算法来管理内存,其最主要的原因是它很难解决对象之间相互循环引用的问题。
所谓对象之间的相互引用问题,即除了对象objA 和 objB 相互引用着对方之外,这两个对象之间再无任何引用。但是他们因为互相引用对方,导致它们的引用计数器都不为0,于是引用计数算法无法通知 GC 回收器回收他们。
2.可达性分析法
这个算法的基本思想就是通过一系列的称为 “GC Roots” 的对象作为起点,从这些节点开始向下搜索,节点所走过的路径称为引用链,当一个对象到 GC Roots 没有任何引用链相连的话,则证明此对象是不可用的(或不可达)。
如上图所示,虽然5、6、7对象相互关联,但是它们到GC Roots是不可达的,所以也会被判定为可回收对象。
在Java语言中,一般能作为GC Roots的对象包括以下几种:
3.再谈引用
无论是通过引用计数法判断对象引用数量,还是通过可达性分析法判断对象的引用链是否可达,判定对象的存活都与“引用”有关。JDK1.2之前,Java中引用的定义很传统:如果reference类型的数据存储的数值代表的是另一块内存的起始地址,就称这块内存代表一个引用。
这样对象只有被引用与不被引用两种状态,之后的Java对引用的概念进行了扩充,将引用分为强引用、软引用、弱引用、虚引用四种(引用强度逐渐减弱)。
强引用:
以前我们使用的大部分引用实际上都是强引用,这是使用最普遍的引用。如果一个对象具有强引用,那就类似于必不可少的生活用品,垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足问题。
软引用:
如果一个对象只具有软引用,那就类似于有用但非必需品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存。
软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收,JAVA虚拟机就会把这个软引用加入到与之关联的引用队列中。
弱引用:
如果一个对象只具有弱引用,那就类似于可有可无的生活用品。
弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。
虚引用:
“虚引用”顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收。
虚引用主要用来跟踪对象被垃圾回收的活动。
虚引用与软引用和弱引用的一个区别在于: 虚引用必须和引用队列(ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中。程序可以通过判断引用队列中是 否已经加入了虚引用,来了解被引用的对象是否将要被垃圾回收。程序如果发现某个虚引用已经被加入到引用队列,那么就可以在所引用的对象的内存被回收之前采取必要的行动。
特别注意,在程序设计中一般很少使用弱引用与虚引用,使用软引用的情况较多,这是因为软引用可以加速JVM对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生。
3.不可达对象不一定会“死亡”
即使在可达性分析法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑阶段”,要真正宣告一个对象死亡,至少要经历两次标记过程:
被判定为需要执行的对象将会被放在一个队列中进行第二次标记,除非这个对象与引用链上的任何一个对象建立关联,否则就会被真的回收。
4.回收方法区
方法区也称为永久代,其垃圾收集的效率很低,主要分为两大部分:废弃常量和无用的类。
废弃常量:
运行时常量池主要回收的是废弃的常量。那么,我们如何判断一个常量是废弃常量呢?
假如在常量池中存在字符串 “abc”,如果当前没有任何String对象引用该字符串常量的话,就说明常量 “abc” 就是废弃常量,如果这时发生内存回收的话而且有必要的话,”abc” 就会被系统清理出常量池。
注意:JDK1.7之后版本的 JVM 已经将运行时常量池从方法区中移到了 Java 堆(Heap)中的一块区域。
无用的类:
方法区主要回收的是无用的类,那么如何判断一个类是无用的类的呢?
判定一个常量是否是“废弃常量”比较简单,而要判定一个类是否是“无用的类”的条件则相对苛刻许多。类需要同时满足下面3个条件才能算是 “无用的类” :
- 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。
- 加载该类的 ClassLoader 已经被回收。
- 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。
虚拟机可以对满足上3个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样不使用了就会必然被回收。
标记-清除算法分为“标记”和“清除”阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。它是最基础的收集算法,但是会带来两个明显的问题:
为了解决效率问题,“复制”收集算法出现了。它可以将内存分为大小相同的两块,每次使用其中的一块。当这一块的内存使用完后,就将还存活的对象复制到另一块去,然后再把使用的空间一次清理掉。这样就使每次的内存回收都是对内存区间的一半进行回收。
这也是之前提到的新生代内存区为什么划分为Eden,Survivor0和Survivor1三个区且比例为8:1:1的原因,因为在新生代的Java对象其实大部分都是“朝生夕死”的,所以并不需要按1:1来划分空间,而是将内存分为一块大的Eden区和两块相同的小区域Survivor。
每次使用Eden和其中一块Survivor空间(S0或者S1),每次回收时,将Eden和Survivor中还活着的对象一次性复制到另一块Survivor区域,最后才清理掉Eden和刚才用过的Survivor空间,HotSpot默认的三个区域划分比例为8:1:1,也就是说每次新生代可以使用的空间为整个新生代容量的90%。
需要注意的是,虽然大部分情况下新生代对象寿命都很短,但还是没法保证每次回收后存活的对象都是不多于10%,即不会超过一个Survivor区空间大小的,所以就需要依赖其他内存(老年代区)对此进行分配担保,超过了就放入老年代。
根据老年代的特点特出的一种标记算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象回收,而是让所有存活的对象向一段移动,然后直接清理掉端边界以外的内存。
当前虚拟机的垃圾手机都采用分代收集算法,分代收集算法并不是一种算法,而是一种垃圾收集的策略:根据对象存活周期的不同将内存分为几块,如java堆分为新生代和老年代,这样我们就可以根据各个年代的特点选择合适的垃圾收集算法。
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。
虽然我们对各个收集器进行比较,但并非了挑选出一个最好的收集器。因为知道现在位置还没有最好的垃圾收集器出现,更加没有万能的垃圾收集器(如果有万能的,那还分什么种类),我们能做的就是根据具体应用场景选择适合自己的垃圾收集器。
Serial(串行)收集器收集器是最基本、历史最悠久的垃圾收集器了。大家看名字就知道这个收集器是一个单线程收集器了。它的 “单线程” 的意义不仅仅意味着它只会使用一条垃圾收集线程去完成垃圾收集工作,更重要的是它在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。
新生代采用复制算法,老年代采用标记-整理算法。
虚拟机的设计者们当然知道Stop The World带来的不良用户体验,所以在后续的垃圾收集器设计中停顿时间在不断缩短。
Serial收集器有没有优于其他垃圾收集器的地方呢?当然有,它简单而高效(与其他收集器的单线程相比)。Serial收集器由于没有线程交互的开销,自然可以获得很高的单线程收集效率。Serial收集器对于运行在Client模式下的虚拟机来说是个不错的选择。
ParNew收集器其实就是Serial收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和Serial收集器完全一样。
新生代采用复制算法,老年代采用标记-整理算法。
它是许多运行在Server模式下的虚拟机的首要选择,除了Serial收集器外,只有它能与CMS收集器(真正意义上的并发收集器,后面会介绍到)配合工作。
Parallel Scavenge 收集器类似于ParNew 收集器,Parallel Scavenge收集器关注点是吞吐量(高效率的利用CPU)。CMS等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。所谓吞吐量就是CPU中用于运行用户代码的时间与CPU总消耗时间的比值。
Parallel Scavenge收集器提供了很多参数供用户找到最合适的停顿时间或最大吞吐量,如果对于收集器运作不太了解的话,手工优化存在的话可以选择把内存管理优化交给虚拟机去完成也是一个不错的选择。
新生代采用复制算法,老年代采用标记-整理算法。
Serial收集器的老年代版本,它同样是一个单线程收集器,它的主要意义是给Client模式下的虚拟机使用。
在Sever模式下,它主要有两大用途:一种用途是在JDK1.5以及以前的版本中与Parallel Scavenge收集器搭配使用,另一种用途是作为CMS收集器的后备方案。
Parallel Scavenge收集器的老年代版本。使用多线程和“标记-整理”算法。在注重吞吐量以及CPU资源的场合,都可以优先考虑 Parallel Scavenge收集器和Parallel Old收集器。
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它而非常符合在注重用户体验的应用上使用。
CMS(Concurrent Mark Sweep)收集器是HotSpot虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
从名字中的Mark Sweep这两个词可以看出,CMS收集器是一种 “标记-清除”算法实现的,它的运作过程相比于前面几种垃圾收集器来说更加复杂一些。整个过程分为四个步骤:
从它的名字就可以看出它是一款优秀的垃圾收集器,主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:
G1 (Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足GC停顿时间要求的同时,还具备高吞吐量性能特征。被视为JDK1.7中HotSpot虚拟机的一个重要进化特征。它具备一下特点:
- 并行与并发:G1能充分利用CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿时间。部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让java程序继续执行。
- 分代收集:虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但是还是保留了分代的概念。
- 空间整合:与CMS的“标记–清理”算法不同,G1从整体来看是基于“标记整理”算法实现的收集器;从局部上来看是基于“复制”算法实现的。
- 可预测的停顿:这是G1相对于CMS的另一个大优势,降低停顿时间是G1 和 CMS 共同的关注点,但G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内。
G1收集器的运作大致分为以下几个步骤:
G1收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的Region(这也就是它的名字Garbage-First的由来)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。
参考文章:
《深入理解Java虚拟机》
https://blog.csdn.net/bluetjs/article/details/52874852