开机过程指的是从打开计算机电源直到Linux显示用户登录画面的全过程。分析LINUX开机过程也是深入了解LINUX核心工作原理的一个很好的途径。 启动第一步--加载BIOS 当你打开计算机电源,计算机会首先加载BIOS信息,BIOS信息是如此的重要,以至于计算机必须在最开始就找到它。这是因为BIOS中包含了CPU的相关信息、设备启动顺序信息、硬盘信息、内存信息、时钟信息、PnP特性等等。在此之后,计算机心里就有谱了,知道应该去读取哪个硬件设备了。在BIOS将系统的控制权交给硬盘第一个扇区之后,就开始由Linux来控制系统了。 启动第二步--读取MBR 硬盘上第0磁道第一个扇区被称为MBR,也就是Master Boot Record,即主引导记录,它的大小是512字节,可里面却存放了预启动信息、分区表信息。可分为两部分:第一部分为引导(PRE-BOOT)区,占了446个字节;第二部分为分区表(PARTITION PABLE),共有66个字节,记录硬盘的分区信息。预引导区的作用之一是找到标记为活动(ACTIVE)的分区,并将活动分区的引导区读入内存。 系统找到BIOS所指定的硬盘的MBR后,就会将其复制到0×7c00地址所在的物理内存中。其实被复制到物理内存的内容就是Boot Loader,而具体到你的电脑,那就是lilo或者grub了。 启动第三步--Boot Loader Boot Loader 就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核做好一切准备。通常,BootL oade:是严重地依赖于硬件而实现的,不同体系结构的系统存在着不同的Boot Loader。 Linux的引导扇区内容是采用汇编语言编写的程序,其源代码在arch/i386/boot中(不同体系的CPU有其各自的boot目录),有4个程序文件: ◎bootsect.S,引导扇区的主程序,汇编后的代码不超过512字节,即一个扇区的 大 小 ◎setup.S, 引导辅助程序 ◎edd.S,辅助程序的一部分,用于支持BIOS增强磁盘设备服务 ◎video.S,辅助程序的另一部分,用于引导时的屏幕显示 Boot Loader有若干种,其中Grub、Lilo和spfdisk是常见的Loader,这里以Grub为例来讲解吧。 系统读取内存中的grub配置信息(一般为menu.lst或grub.lst),并依照此配置信息来启动不同的操作系统。 启动第四步--加载内核 根据grub设定的内核映像所在路径,系统读取内存映像,并进行解压缩操作。此时,屏幕一般会输出“Uncompressing Linux”的提示。当解压缩内核完成后,屏幕输出“OK, booting the kernel”。 系统将解压后的内核放置在内存之中,并调用start_kernel()函数来启动一系列的初始化函数并初始化各种设备,完成Linux核心环境的建立。至此,Linux内核已经建立起来了,基于Linux的程序应该可以正常运行了。 start_kenrel()定义在init/main.c中,它就类似于一般可执行程序中的main()函数,系统在此之前所做的仅仅是一些能让内核程序最低限度执行的初始化操作,真正的内核初始化过程是从这里才开始。函数start_kerenl()将会调用一系列的初始化函数,用来完成内核本身的各方面设置,目的是最终建立起基本完整的Linux核心环境。 start_kernel()中主要执行了以下操作: (1) 在屏幕上打印出当前的内核版本信息。 (2) 执行setup_arch(),对系统结构进行设置。 (3)执行sched_init(),对系统的调度机制进行初始化。先是对每个可用CPU上的runqueque进行初始化;然后初始化0号进程(其task struct和系统空M堆栈在startup_32()中己经被分配)为系统idle进程,即系统空闲时占据CPU的进程。 (4)执行parse_early_param()和parsees_args()解析系统启动参数。 (5)执行trap_in itQ,先设置了系统中断向量表。0-19号的陷阱门用于CPU异常处理;然后初始化系统调用向量;最后调用cpu_init()完善对CPU的初始化,用于支持进程调度机制,包括设定标志位寄存器、任务寄存器、初始化程序调试相关寄存器等等。 (6)执行rcu_init(),初始化系统中的Read-Copy Update互斥机制。 (7)执行init_IRQ()函数,初始化用于外设的中断,完成对IDT的最终初始化过程。 (8)执行init_timers(), softirq_init()和time_init()函数,分别初始系统的定时器机制,软中断机制以及系统日期和时间。 (9)执行mem_init()函数,初始化物理内存页面的page数据结构描述符,完成对物理内存管理机制的创建。 (10)执行kmem_cache_init(),完成对通用slab缓冲区管理机制的初始化工作。 (11)执行fork_init(),计算出当前系统的物理内存容量能够允许创建的进程(线程)数量。 (12)执行proc_caches_init() , bufer_init(), unnamed_dev_init() ,vfs_caches_init(), signals_init()等函数对各种管理机制建立起专用的slab缓冲区队列。 (13 )执行proc_root_init()Wl数,对虚拟文件系统/proc进行初始化。 在 start_kenrel()的结尾,内核通过kenrel_thread()创建出第一个系统内核线程(即1号进程),该线程执行的是内核中的init()函数,负责的是下一阶段的启动任务。最后调用cpues_idle()函数:进入了系统主循环体口默认将一直执行default_idle()函数中的指令,即CPU的halt指令,直到就绪队列中存在其他进程需要被调度时才会转向执行其他函数。此时,系统中唯一存在就绪状态的进程就是由kerne_hread()创建的init进程(内核线程),所以内核并不进入default_idle()函数,而是转向init()函数继续启动过程。 启动第五步--用户层init依据inittab文件来设定运行等级 内核被加载后,第一个运行的程序便是/sbin/init,该文件会读取/etc/inittab文件,并依据此文件来进行初始化工作。 其实/etc/inittab文件最主要的作用就是设定Linux的运行等级,其设定形式是“:id:5:initdefault:”,这就表明Linux需要运行在等级5上。Linux的运行等级设定如下: 0:关机 1:单用户模式 2:无网络支持的多用户模式 3:有网络支持的多用户模式 4:保留,未使用 5:有网络支持有X-Window支持的多用户模式 6:重新引导系统,即重启 启动第六步--init进程执行rc.sysinit 在设定了运行等级后,Linux系统执行的第一个用户层文件就是/etc/rc.d/rc.sysinit脚本程序,它做的工作非常多,包括设定PATH、设定网络配置(/etc/sysconfig/network)、启动swap分区、设定/proc等等。如果你有兴趣,可以到/etc/rc.d中查看一下rc.sysinit文件。 线程init的最终完成状态是能够使得一般的用户程序可以正常地被执行,从而真正完成可供应用程序运行的系统环境。它主要进行的操作有: (1) 执行函数do_basic_setup(),它会对外部设备进行全面地初始化。 (2) 构建系统的虚拟文件系统目录树,挂接系统中作为根目录的设备(其具体的文 件系统已经在上一步骤中注册)。 (3) 打开设备/dev/console,并通过函数sys_dup()打开的连接复制两次,使得文件号0,1 ,2 全部指向控制台。这三个文件连接就是通常所说的“标准输入”stdin,“标准输出”stdout和“标准出错信息”stderr这三个标准I/O通道。 (4) 准备好以上一切之后,系统开始进入用户层的初始化阶段。内核通过系统调用execve()加载执T子相应的用户层初始化程序,依次尝试加载程序"/sbin/initl"," /etc/init"," /bin/init',和“/bin/sh。只要其中有一个程序加载获得成功,那么系统就将开始用户层的初始化,而不会再回到init()函数段中。至此,init()函数结束,Linux内核的引导 部分也到此结束。 启动第七步--启动内核模块 具体是依据/etc/modules.conf文件或/etc/modules.d目录下的文件来装载内核模块。 启动第八步--执行不同运行级别的脚本程序 根据运行级别的不同,系统会运行rc0.d到rc6.d中的相应的脚本程序,来完成相应的初始化工作和启动相应的服务。 启动第九步--执行/etc/rc.d/rc.local 你如果打开了此文件,里面有一句话,读过之后,你就会对此命令的作用一目了然: # This script will be executed *after* all the other init scripts. # You can put your own initialization stuff in here if you don’t # want to do the full Sys V style init stuff. rc.local就是在一切初始化工作后,Linux留给用户进行个性化的地方。你可以把你想设置和启动的东西放到这里。 启动第十步--执行/bin/login程序,进入登录状态 此时,系统已经进入到了等待用户输入username和password的时候了,你已经可以用自己的帐号登入系统了。 1: 启动电源后,主机第一步先做的就是查询BIOS(全称:basic input/output system 基本输入输出系统)信息。了解整个系统的硬件状态,如CPU,内存,显卡,网卡等。嗯,这一步windows算和它是一家。不分彼此。 2: 接下来,就是主机读取MBR(硬盘的第一个扇区)里的boot loader了。这个可是重点哦,据说troubleshooting里就会考这点,给个坏了的loader,叫你修正。windows不支持linux的分区格式。所以,用windows的boot。ini是查不到linux的系统的。一般我装系统都是先装 windows再装linux,然后用grub来做boot loader。两个字:省心!因为linux不像windows那么小气。grub可是支持windows分区格式的哦。 3: 接上一步,主机读取boot loader后,会读取里面的信息,知道谁跟谁是待在哪,假如主机想进入linux系统,读取到linux核心是在/boot文件目录中后,将此核心加载到内存中。开始了接下来的分析启动之旅。 4: OK,第一个运行程序是谁?就是/sbin/init程序。不信,就用top程序看下,是不是PID为1的就是这个东东,它,可是万物之祖啊,我简称它是女娲娘娘(不喜欢亚当夏娃)。 · 5: init首先查找启动等级(run-level)。因为启动等级不同,其运行脚本(也就是服务)会不同。默认的等级有以下几项: 0 - halt (系统直接关机) 1 - single user mode (单人模式,用于系统维护时使用) 2 - Multi-user, without NFS (类似3模式,不过少了NFS服务) 3 - Full multi-user mode (完整模式,不过,是文本模式) 4 - unused (系统保留功能) 5 - X11 (与3模式类似,不过,是X终端显示) 6 - reboot (重新开机) (不要选择0或4,6 否则,进步了系统的) · 6: OK。系统知道自己的启动等级后,接下来,不是去启动服务,而是,先设置好主机运行环境。读取的文件是/etc/rc。d/rc。sysinit文件。那究竟要设置哪些环境呢? · 设置网络环境/etc/sysconfig/network,如主机名,网关,IP,DNS等。 · 挂载/proc。此文件是个特殊文件,大小为0,因为它是在内存当中。里面东东最好别删。 · 根据内核在开机时的结果/proc/sys/kernel/modprobe。开始进行周边设备的侦测。 · 载入用户自定义的模块/etc/sysconfig/modules/*。modules · 读取/etc/sysctl。conf文件对内核进行设定。 · 设定时间,终端字体,硬盘LVM或RAID功能,以fsck进行磁盘检测。 · 将开机状况记录到/var/log/dmesg中。(可以用命令dmesg查看结果) · 7: OK,接下来,就是启动系统服务了,不同的run-level会有不同的服务启动。到/etc/rc。d目录中,不同的level会有不同的目录。如启动 3模式,会有个rc3。d目录,里面就保存着服务。其中,S(start)开头的表明开机启动,K(kill)开头的表明开机不启动。数字表示启动顺序。数字越小,启动越早。 注意,他们都是连接到etc/rc。d/init。d/目录中的相关文件。所以,想手工启动某一服务,可以用"/etc/rc。d/init。 d/某个服务 start"启动哦。相反,我们也可以把某个服务ln(链接命令)到不同run-level的目录中。记得打上S或者K+数字哦。 · 8: 读取服务后,主机会读取/etc/rc。d/rc。local文件。所以,如果需要什么开机启动的话,可以写个脚本或命令到这里面来。就不用像上面那么麻烦。以后删除也方便。 OK,经过一番长途跋涉后,系统终于可以安心的开启shell了。
linux开机启动服务的修改与查看 (2009-08-31 17:59)
分类: linux菜鸟起航
每次系统开机的时候,都会根据不同的runlevel级别启动不同的服务。 开机按[CTRL]+[ALT]+[F7]/[F8]可查看系统启动时正在启动的服务!!!!
众所周知Linux给我们提供了7中不同的启动级别0~6,那么不同的启动级别都会启动那些服务哪。可以使用chkconfig ——list 查看,可以使用chkconfig 服务名 ——level 3 {on|of}修改是否要再某个级别启动或停止。 1. 例如:要把sshd服务在第3种启动级别中停止。
2. 还可以手工修改,在/etc/rc.d/这个目录里有很多不同runlevel对应的目录,里面表明进入某个启动级别时要启动和停止那些服务。
例如: 中国网管联盟www、bitsCN、com
K开头代表这个启动级别需要停止的服务,编号是停止的时候执行的顺序,再后面就是服务明了。
S开头则是要启动那些服务。 网管网bitsCN_com 注意:先执行K开头的,后执行S开头的。所以S开头的服务会覆盖K开头的服务。 Linux设置程序的开机自启动与Linux服务
|
分类: LINUX
经过对Linux系统有了一定了解和熟悉后,想对其更深层次的东西做进一步探究。这当中就包括系统的启动流程、文件系统的组成结构、基于动态库和静态库的程序在执行时的异同、协议栈的架构和原理、驱动程序的机制等等。
本人在综合了现有网上大家智慧的基础上,结合对2.6.32的内核代码的研读,基于CentOS 6.0系统对Linux的启动流程做了些分析。由于才疏学浅,知识所限,有些地方分析不妥之处还请各位高手不吝赐教。
OK,我们言归正传。对于一台安装了Linux系统的主机来说,当用户按下开机按钮时,一共要经历以下几个过程,如图:
其中,每个过程都执行了自己该做的初始化部分的事情,有些过程又可分为好几个子过程。接下来,我们就对每个阶段做一个详细分析和讲解。
稍有计算机基础的人都应该听过BIOS(Basic Input / Output System),又称基本输入输出系统,可以视为是一个永久地记录在ROM中的一个软件,是操作系统输入输出管理系统的一部分。早期的BIOS芯片确实是"只读"的,里面的内容是用一种烧录器写入的,一旦写入就不能更改,除非更换芯片。现在的主机板都使用一种叫Flash EPROM的芯片来存储系统BIOS,里面的内容可通过使用主板厂商提供的擦写程序擦除后重新写入,这样就给用户升级BIOS提供了极大的方便。
BIOS的功能由两部分组成,分别是POST码和Runtime服务。POST阶段完成后它将从存储器中被清除,而Runtime服务会被一直保留,用于目标操作系统的启动。BIOS两个阶段所做的详细工作如下:
步骤1:上电自检POST(Power-on self test),主要负责检测系统外围关键设备(如:CPU、内存、显卡、I/O、键盘鼠标等)是否正常。例如,最常见的是内存松动的情况,BIOS自检阶段会报错,系统就无法启动起来;
步骤2:步骤1成功后,便会执行一段小程序用来枚举本地设备并对其初始化。这一步主要是根据我们在BIOS中设置的系统启动顺序来搜索用于启动系统的驱动器,如硬盘、光盘、U盘、软盘和网络等。我们以硬盘启动为例,BIOS此时去读取硬盘驱动器的第一个扇区(MBR,512字节),然后执行里面的代码。实际上这里BIOS并不关心启动设备第一个扇区中是什么内容,它只是负责读取该扇区内容、并执行。
至此,BIOS的任务就完成了,此后将系统启动的控制权移交到MBR部分的代码。
PS: 在个人电脑中,Linux的启动是从0xFFFF0地址开始的。
磁盘分区表包含以下三部分:
1)、Partition ID (5:延申 82:Swap 83:Linux 8e:LVM fd:RAID)
2)、Partition起始磁柱
3)、Partition的磁柱数量
通常情况下,诸如lilo、grub这些常见的引导程序都直接安装在MBR中。我们以grub为例来分析这个引导过程。
grub引导也分为两个阶段stage1阶段和stage2阶段(有些较新的grub又定义了stage1.5阶段)。
1)、stage1:stage1是直接被写入到MBR中去的,这样机器一启动检测完硬件后,就将控制权交给了GRUB的代码。也就是上图所看到的前446个字节空间中存放的是stage1的代码。BIOS将stage1载入内存中0x7c00处并跳转执行。stage1(/stage1/start.S)的任务非常单纯,仅仅是将硬盘0头0道2扇区读入内存。而0头0道2扇区内容是源代码中的/stage2/start.S,编译后512字节,它是stage2或者stage1_5的入口。而此时,stage1是没有识别文件系统的能力的。如果感觉脑子有些晕了,那么下面的过程就直接跳过,去看stage2吧!
【外传】定位硬盘的0头0道2扇区的过程:
BIOS将stage1载入内存0x7c00处并执行,然后调用BIOS INIT13中断,将硬盘0头0道2扇区内容载入内存0x7000处,然后调用copy_buffer将其转移到内存0x8000处。在定位0头0道2扇区时通常有两种寻址方式:LBA和CHS。如果你是刨根问底儿型的爱好者,那么此时去找谷哥打听打听这两种方式的来龙去脉吧。
2)、stage2:严格来说这里还应该再区分个stage1.5的,就一并把stage1.5放在这里一起介绍了,免得大家看得心里乱哄哄的。好的,我们继续说0头0到2扇区的/stage2/start.S文件,当它的内容被读入到内存之后,它的主要作用就是负责将stage2或stage1.5从硬盘读到内存中。如果是stage2,它将被载入到0x820处;如果是stage1.5,它将被载入到0x2200处。这里的stage2或者stage1_5不是/boot分区/boot/grub目录下的文件,因为这个时候grub还没有能力识别任何文件系统。
? 如果start.S加载stage1.5:stage1.5它存放在硬盘0头0道3扇区向后的位置,stage1_5作为stage1和stage2中间的桥梁,stage1_5有识别文件系统的能力,此后grub才有能力去访问/boot分区/boot/grub目录下的 stage2文件,将stage2载入内存并执行。
? 如果start.S加载stage2:同样,这个stage2也不是/boot分区/boot/grub目录下的stage2,这个时候start.S读取的是存放在/boot分区Boot Sector的stage2。这种情况下就有一个限制:因为start.S通过BIOS中断方式直接对硬盘寻址(而非通过访问具体的文件系统),其寻址范围有限,限制在8GB以内。因此这种情况需要将/boot分区分在硬盘8GB寻址空间之前。
假如是情形2,我们将/boot/grub目录下的内容清空,依然能成功启动grub;假如是情形1,将/boot/grub目录下stage2删除后,则系统启动过程中grub会启动失败。
当stage2被载入内存执行时,它首先会去解析grub的配置文件/boot/grub/grub.conf,然后加载内核镜像到内存中,并将控制权转交给内核。而内核会立即初始化系统中各设备并做相关的配置工作,其中包括CPU、I/O、存储设备等。
关于Linux的设备驱动程序的加载,有一部分驱动程序直接被编译进内核镜像中,另一部分驱动程序则是以模块的形式放在initrd(ramdisk)中。
Linux内核需要适应多种不同的硬件架构,但是将所有的硬件驱动编入内核又是不实际的,而且内核也不可能每新出一种硬件结构,就将该硬件的设备驱动写入内核。实际上Linux的内核镜像仅是包含了基本的硬件驱动,在系统安装过程中会检测系统硬件信息,根据安装信息和系统硬件信息将一部分设备驱动写入 initrd 。这样在以后启动系统时,一部分设备驱动就放在initrd中来加载。这里有必要给大家再多介绍一下initrd这个东东:
initrd 的英文含义是 bootloader initialized RAM disk,就是由 boot loader 初始化的内存盘。在 linu2.6内核启动前,boot loader 会将存储介质中的 initrd 文件加载到内存,内核启动时会在访问真正的根文件系统前先访问该内存中的 initrd 文件系统。在 boot loader 配置了 initrd 的情况下,内核启动被分成了两个阶段,第一阶段先执行 initrd 文件系统中的init,完成加载驱动模块等任务,第二阶段才会执行真正的根文件系统中的 /sbin/init 进程。
另外一个概念:initramfs
initramfs 是在 kernel 2.5中引入的技术,实际上它的含义就是:在内核镜像中附加一个cpio包,这个cpio包中包含了一个小型的文件系统,当内核启动时,内核将这个 cpio包解开,并且将其中包含的文件系统释放到rootfs中,内核中的一部分初始化代码会放到这个文件系统中,作为用户层进程来执行。这样带来的明显的好处是精简了内核的初始化代码,而且使得内核的初始化过程更容易定制。
疑惑的是:我的内核是2.6.32-71.el6.i686版本,但在我的/boot分区下面却存在的是/boot/initramfs-2.6.32-71.el6.i686.img类型的文件,没搞明白,还望高人解惑。我只知道在2.6内核中支持两种格式的initrd,一种是2.4内核的文件系统镜像image-initrd,一种是cpio格式。接下来我们就来探究一下initramfs-2.6.32-71.el6.i686.img里到底放了那些东西。
如果initrd.img文件的格式显示为“initrd.img:ISO 9660 CD-ROM filesystem data”,则可直接输入命令“mount -o loop initrd.img /mnt/test”进行挂载。
通过上的分析和我们的验证,我们确实得到了这样的结论:
grub的stage2将initrd加载到内存里,让后将其中的内容释放到内容中,内核便去执行initrd中的init脚本,这时内核将控制权交给了init文件处理。我们简单浏览一下init脚本的内容,发现它也主要是加载各种存储介质相关的设备驱动程序。当所需的驱动程序加载完后,会创建一个根设备,然后将根文件系统rootfs以只读的方式挂载。这一步结束后,释放未使用的内存,转换到真正的根文件系统上面去,同时运行/sbin/init程序,执行系统的1号进程。此后系统的控制权就全权交给/sbin/init进程了。
l 初始化系统
经过千辛万苦的跋涉,我们终于接近黎明的曙光了。接下来就是最后一步了:初始化系统。/sbin/init进程是系统其他所有进程的父进程,当它接管了系统的控制权先之后,它首先会去读取/etc/inittab文件来执行相应的脚本进行系统初始化,如设置键盘、字体,装载模块,设置网络等。主要包括以下工作:
1)、执行系统初始化脚本(/etc/rc.d/rc.sysinit),对系统进行基本的配置,以读写方式挂载根文件系统及其它文件系统,到此系统算是基本运行起来了,后面需要进行运行级别的确定及相应服务的启动。rc.sysinit所做的事情(不同的Linux发行版,该文件可能有些差异)如下:
(1)获取网络环境与主机类型。首先会读取网络环境设置文件"/etc/sysconfig/network",获取主机名称与默认网关等网络环境。
(2)测试与载入内存设备/proc及usb设备/sys。除了/proc外,系统会主动检测是否有usb设备,并主动加载usb驱动,尝试载入usb文件系统。
(3)决定是否启动SELinux。
(4)接口设备的检测与即插即用(pnp)参数的测试。
(5)用户自定义模块的加载。用户可以再"/etc/sysconfig/modules/*.modules"加入自定义的模块,此时会加载到系统中。
(6)加载核心的相关设置。按"/etc/sysctl.conf"这个文件的设置值配置功能。
(7)设置系统时间(clock)。
(8)设置终端的控制台的字形。
(9)设置raid及LVM等硬盘功能。
(10)以方式查看检验磁盘文件系统。
(11)进行磁盘配额quota的转换。
(12)重新以读取模式载入系统磁盘。
(13)启动quota功能。
(14)启动系统随机数设备(产生随机数功能)。
(15)清楚启动过程中的临时文件。
(16)将启动信息加载到"/var/log/dmesg"文件中。
当/etc/rc.d/rc.sysinit执行完后,系统就可以顺利工作了,只是还需要启动系统所需要的各种服务,这样主机才可以提供相关的网络和主机功能,因此便会执行下面的脚本。
2)、执行/etc/rc.d/rc脚本。该文件定义了服务启动的顺序是先K后S,而具体的每个运行级别的服务状态是放在/etc/rc.d/rc*.d(*=0~6)目录下,所有的文件均是指向/etc/init.d下相应文件的符号链接。rc.sysinit通过分析/etc/inittab文件来确定系统的启动级别,然后才去执行/etc/rc.d/rc*.d下的文件。
/etc/init.d-> /etc/rc.d/init.d
/etc/rc ->/etc/rc.d/rc
/etc/rc*.d ->/etc/rc.d/rc*.d
/etc/rc.local-> /etc/rc.d/rc.local
/etc/rc.sysinit-> /etc/rc.d/rc.sysinit
也就是说,/etc目录下的init.d、rc、rc*.d、rc.local和rc.sysinit均是指向/etc/rc.d目录下相应文件和文件夹的符号链接。我们以启动级别3为例来简要说明一下。
/etc/rc.d/rc3.d目录,该目录下的内容全部都是以 S 或 K 开头的链接文件,都链接到"/etc/rc.d/init.d"目录下的各种shell脚本。S表示的是启动时需要start的服务内容,K表示关机时需要关闭的服务内容。/etc/rc.d/rc*.d中的系统服务会在系统后台启动,如果要对某个运行级别中的服务进行更具体的定制,通过chkconfig命令来操作,或者通过setup、ntsys、system-config-services来进行定制。如果我们需要自己增加启动的内容,可以在init.d目录中增加相关的shell脚本,然后在rc*.d目录中建立链接文件指向该shell脚本。这些shell脚本的启动或结束顺序是由S或K字母后面的数字决定,数字越小的脚本越先执行。例如,/etc/rc.d/rc3.d /S01sysstat就比/etc/rc.d/rc3.d /S99local先执行。
3)、执行用户自定义引导程序/etc/rc.d/rc.local。其实当执行/etc/rc.d/rc3.d/S99local时,它就是在执行/etc/rc.d/rc.local。S99local是指向rc.local的符号链接。就是一般来说,自定义的程序不需要执行上面所说的繁琐的建立shell增加链接文件的步骤,只需要将命令放在rc.local里面就可以了,这个shell脚本就是保留给用户自定义启动内容的。
4)、完成了系统所有的启动任务后,linux会启动终端或X-Window来等待用户登录。tty1,tty2,tty3...这表示在运行等级1,2,3,4的时候,都会执行"/sbin/mingetty",而且执行了6个,所以linux会有6个纯文本终端,mingetty就是启动终端的命令。
除了这6个之外还会执行"/etc/X11/prefdm-nodaemon"这个主要启动X-Window
至此,系统就启动完毕了。以上分析不到的地方还请各位大虾不吝指正。
关于Linux的其他分析内容下次再继续写。
最后附上一张非常完整的系统启动流程图,适合各个水平阶段的读者。
参考文献:
http://www.cnblogs.com/scnutiger/archive/2009/09/30/1576795.html
http://www.it.com.cn/f/edu/0411/24/51090.htm
http://bbs.chinaunix.net/thread-2046548-1-1.html
http://space.itpub.net/8111049/viewspace-680043
http://dongdiy.blog.51cto.com/1908223/366909
http://icarusli.iteye.com/blog/625755
http://www.54sa.net/?p=549
http://roclinux.cn/?p=1301
版权声明:本文为博主原创文章,未经博主允许不得转载。
目录(?)[+]
Debian6上默认提供六个终端(Ctrl+Alt+F1~F6,因为F7,F8用来打开图形界面而不是用作终端),但是实际上内核默认是64个终端,那么其他的终端哪去了?假如你在Linux虚拟机上,你可以访问tty10甚至tty12(使用Ctrl+Alt+F*),但是你没有更多的功能键,以后我们在讨论如何访问其他的终端。
分类: LINUX