- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- Pytorch深度学习入门基础(二):python 编辑器的选择、 安装及配置( pycharm、 jupyter)
慕奕宸
深度学习深度学习pythonpytorch
目录一、下载pycharm1.下载pycharm2.pycharm配置3.检查pycharm环境是否配置好二、Jupyter安装三、常见问题:1.为什么torch.cuda.isavailable()为False2.无法定位程序输入点现在来开一个专栏,关于学习Pytorch深度学习的入门基础,分为好几期,我会慢慢更新,希望大家可以互相支持一下,相互学习,相互进步!下面是这个专栏的所有内容,大家可以
- pytorch深度学习入门(12)之-神经网络导出onnx模型部署与应用
码农呆呆
深度学习深度学习pytorch神经网络
概述:ONNX(OpenNeuralNetworkExchange)是一种开放神经网络交换格式,它使得不同深度学习框架(如TensorFlow、PyTorch、MXNet等)之间的互操作成为可能。ONNX提供了一种标准化的方式,可以将训练好的模型导出并转换为ONNX格式,然后可以在其他支持ONNX的框架或工具中进行部署和推理。ONNX的主要优势在于它促进了深度学习模型在不同平台之间的互操作性和可移
- AI人工智能深度学习入门指南:从基础到实践_副本
AI大模型应用实战
C人工智能深度学习ai
AI人工智能深度学习入门指南:从基础到实践关键词:人工智能、机器学习、深度学习、神经网络、梯度下降、反向传播、实战案例摘要:本文是为零基础或初级学习者打造的深度学习入门指南。我们将从“人工智能-机器学习-深度学习”的关系讲起,用“教机器人认猫”的故事串联核心概念,结合生活比喻(如“多层蛋糕”解释神经网络)、数学公式(如梯度下降的“下山游戏”)和Python实战代码(用Keras实现手写数字识别),
- 深度学习入门指南:从基础概念到代码实践
软考和人工智能学堂
人工智能#深度学习Python开发经验深度学习人工智能
深度学习入门指南:从基础概念到代码实践1.深度学习概述深度学习是机器学习的一个分支,它通过模拟人脑神经元的工作方式,构建多层次的神经网络模型来处理复杂的数据模式。与传统机器学习方法相比,深度学习能够自动从原始数据中学习特征表示,无需过多的人工特征工程。深度学习已经在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展。例如,ImageNet竞赛中深度学习模型的识别准确率已经超过人类水平,而GP
- 深度学习入门(2):alexnet
qq_776882262
深度学习人工智能
引言主要讲下alexnet里的几个方法,后面深度学习的代码部分应该都是借用别人的,整体安排是从简单到难。本篇借鉴Pytorch之AlexNet花朵分类_基于alexnet的花卉分类识别系统-CSDN博客,如果需要学习直接参考这篇就好了,本文只是作为本人复习记录。正文AlexNet是深度学习时代的开端,它用一场决定性的胜利,证明了深度卷积神经网络在计算机视觉中的巨大潜力。单层alexnet网络架构:
- 深度学习入门(3):vgg16
qq_776882262
深度学习人工智能
引言相比于alexnet,vgg16进一步优化了这个黑盒模型,用实验的方式证明了哪些模块有效,哪些模块对检测效果提升有限。奠基了卷积神经网络一些基础的模块。本文参考pytorch实战7:手把手教你基于pytorch实现VGG16_vgg16pytorch-CSDN博客,此处只做记录供本人复习记录。正文VGG16创新点:1.使用小卷积核堆叠代替大卷积核VGG16采用多个连续的3×3小卷积核堆叠,而不
- 深度学习入门:Python搭建简单神经网络模型
缑宇澄
python
在人工智能浪潮中,深度学习凭借强大的特征提取与模式识别能力成为核心技术,而神经网络则是深度学习的基石。从图像识别到自然语言处理,神经网络以独特的结构和学习机制,让计算机能够模拟人类大脑处理复杂信息的过程。本文将带领你从基础理论出发,使用Python和Keras库搭建一个简单的神经网络模型,开启深度学习的探索之旅。一、神经网络基础理论1.1神经元与网络结构神经网络的基本单元是人工神经元(又称节点或单
- 【大模型入门指南 10】大模型推理部署:vLLM和llama.cpp
青松ᵃⁱ
LLM入门系列llama
【大模型入门指南】系列文章:【大模型入门指南01】深度学习入门【大模型入门指南02】LLM大模型基础知识【大模型入门指南03】提示词工程【大模型入门指南04】Transformer结构【大模型入门指南05】LLM技术选型【大模型入门指南06】LLM数据预处理【大模型入门指南07】量化技术解析【大模型入门指南08】微调和分布式训练【大模型入门指南09】LLM和多模态模型高效推理实践【大模型入门指南1
- 深度学习入门:从零搭建你的第一个神经网络
layneyao
ai深度学习神经网络人工智能
深度学习入门:从零搭建你的第一个神经网络系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录深度学习入门:从零搭建你的第一个神经网络摘要引言第一章:神经网络基础原理1.1神经元模型1.2反向传播算法1.3激活函数对比第二章:开发环境搭建指南2.1硬件要求2.2软件环境2.2.1Anaconda配置2.2.2PyTorch安装2.2.3TensorFlo
- 深度学习入门:如何从零开始搭建自己的深度学习模型?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介深度学习(DeepLearning)近几年已经成为人们关注的热点话题。从2012年的ImageNet竞赛开始,激起了众多研究者的兴趣,也带来了越来越多的应用场景。随着技术的飞速发展,深度学习已经成为了各个领域最具潜力的技术。作为一名AI科研工作者,了解、掌握深度学习相关知识可以帮助你更好地理解并解决实际问题。本文将全面介绍深度学习的基础知识、技术要点及其应用。文
- 第6篇:深度学习入门——神经网络基础
CarlowZJ
AI+Python深度学习神经网络人工智能
目录一、前言二、概念讲解(一)深度学习:人工智能皇冠上的明珠(二)神经网络:深度学习的微观世界三、神经网络的基本组件:构建智能的积木(一)神经元:智能的基本单元(二)权重与偏置:连接的智慧(三)激活函数:非线性的魔法(四)损失函数:衡量差距的标尺(五)优化器:攀登优化高峰的向导四、前向传播与反向传播:神经网络的智慧流转(一)前向传播:信息的逐层传递(二)反向传播:误差的逆向追溯五、代码示例:搭建你
- 【深度学习入门篇 ②】Pytorch完成线性回归!
小森( ﹡ˆoˆ﹡ )
深度学习入门篇线性回归算法回归
嗨,大家好,我是小森(﹡ˆoˆ﹡)!易编橙·终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者。易编橙:一个帮助编程小伙伴少走弯路的终身成长社群!上一部分我们自己通过torch的方法完成反向传播和参数更新,在Pytorch中预设了一些更加灵活简单的对象,让我们来构造模型、定义损失,优化损失等;那么接下来,我们一起来了解一下其中常用的API
- day33 python深度学习入门
xiaohanbao09
pynotepython深度学习机器学习pandas人工智能学习
目录深度学习入门:PyTorch实现鸢尾花分类一、环境搭建1.创建Python环境2.安装必要的库3.检查CUDA环境二、数据准备1.加载数据集2.数据预处理3.转换为PyTorch张量三、模型构建1.定义模型结构2.定义损失函数和优化器四、模型训练1.训练过程2.训练结果五、结果可视化六、总结在深度学习的旅程中,神经网络是不可或缺的核心工具之一。今天,我将通过一个简单的项目,使用PyTorch框
- 遥感深度学习——基于deeplabv3+和GID数据集(1)
全域智图
深度学习人工智能
博主最近准备进行深度学习入门,因为是做遥感方向的,经过多重考虑,算法最后选择了deeplabv3+。DeepLabV3+是由谷歌提出的一种用于图像语义分割的深度学习模型。它在DeepLabV3的基础上,加入了编码器-解码器结构,以提高分割结果的边缘细节和空间分辨率。以下是DeepLabV3+的主要特点:编码器-解码器结构:编码器部分提取图像的高层次语义特征,解码器部分逐步恢复图像的空间细节,提高分
- 深度学习入门:从理论到实战的详细指南
人工智能教程
深度学习人工智能算法目标跟踪机器学习YOLO线性回归
的高效学习和理解。对于初学者来说,深度学习的学习曲线可能会显得有些陡峭,但只要掌握正确的方法和步骤,就能轻松入门。本文将为你提供一份从理论到实战的详细指南,帮助你快速掌握深度学习的核心要点。一、深度学习是什么?(一)定义深度学习是机器学习的一个子领域,它通过构建多层的神经网络来学习数据中的复杂模式。与传统的机器学习算法相比,深度学习能够自动提取数据的特征,而不需要人工设计复杂的特征工程。这种自动特
- 深度学习入门:基于 Python 的理论与实现笔记
u013244720
深度学习python笔记
深度学习入门:基于Python的理论与实现笔记在VSCode中运行代码替换库搜索路径#sys.path.append(os.pardir)#为了导入父目录而进行的设定sys.path.append(os.getcwd())替换文件路径#withopen("sample_weight.pkl",'rb')asf:withopen(os.getcwd()+"/ch03/sample_weight.pk
- pytorch深度学习入门(15)之-使用onnx模型量化
码农呆呆
深度学习人工智能pytorch深度学习python神经网络
量化ONNX模型内容量化概述ONNX量化表示格式量化ONNX模型基于变压器的模型Transformer基于变压器的模型GPU上的量化常问问题量化概述ONNX运行时中的量化是指ONNX模型的8位线性量化。在量化期间,浮点值被映射到以下形式的8位量化空间:val_fp32=scale*(val_quantized-zero_point)scale是一个正实数,用于将浮点数映射到量化空间。计算方法如下:
- 深度学习入门--基于Python的理论与实现--Python入门
语文天才高斯
python开发语言人工智能深度学习
第一章Python入门1.1Python是什么Python是一种高级编程语言,由GuidovanRossum于1989年创建,并在1991年正式发布。Python具有以下特点:易读易写:Python语法简洁,代码可读性强,使开发者能够更专注于问题本身。跨平台:Python可以在Windows、Linux和macOS上运行,具有良好的可移植性。丰富的库:Python生态系统中包含大量的第三方库,如N
- 【深度学习入门_NLP自然语言处理】序章
沉默的舞台剧
AI深度学习自然语言处理人工智能
本部分开始深度学习第二大部分NLP章节学习,找了好多资料,终于明确NLP的学习目标了,介于工作之余学习综合考量,还是决定以视频学习为主+后期自主实践为主吧。分享一个总图,其实在定位的时候很迷茫,单各章节领域其实都是很大的范畴,每个部分都是需要专精的,所以在做计划的时候很头大…千里之行始于足下吧,话不多数,直接上NLP的学习应用目标:学习教程的话参照B站实战结合的这个教程【2025NLP自然语言处理
- 具身智能零碎知识点(三):深入解析 “1D UNet”:结构、原理与实战
墨绿色的摆渡人
具身智能零碎知识点pytorch人工智能pythontransformer具身智能
深入解析“1DUNet”:结构、原理与实战【深度学习入门】1DUNet详解:结构、原理与实战指南一、1DUNet是什么?二、核心结构与功能1.整体架构2.编码器(Encoder)3.解码器(Decoder)4.跳跃连接(SkipConnection)5.瓶颈层(Bottleneck)三、数学原理与数值示例1.1D卷积运算2.编码-解码流程四、PyTorch代码实现1.完整模型代码2.使用示例五、实
- 使用Python学习AI的学习攻略
liushangzaibeijing
AI学习python学习人工智能
基于python的AI学习一、夯实基础二、数学基础三、机器学习基础四、深度学习入门五、进阶学习六、学习资源推荐七、实践项目一、夯实基础对于已经掌握Python基础语法的学习者来说,进一步利用Python学习AI需要夯实以下基础:变量和数据类型:包括整数、浮点数、字符串、列表、字典、元组等。条件语句和循环:熟练使用if-else语句和for、while循环。函数:理解函数的定义、调用以及参数传递。面
- 深度学习入门(三):神经网络的学习
WhyNot?
深度学习深度学习神经网络学习
文章目录前言人类思考VS机器学习VS深度学习基础术语损失函数常用的损失函数均方误差MSE(MeanSquareError)交叉熵误差(CrossEntropyError)mini-batch学习为何要设定损失函数数值微分神经网络学习算法的实现两层神经网络的类参考资料前言机器学习的过程通常分为学习(从训练数据中自动获取权重参数的过程)和推理(利用学习到的权重参数对新的数据进行预测)两个环节。本文将主
- 深度学习入门:从神经网络基础到简单实现
Evaporator Core
人工智能#深度学习Python开发经验深度学习神经网络人工智能
深度学习作为人工智能领域最令人兴奋的技术之一,已经在图像识别、自然语言处理、语音识别等多个领域取得了突破性进展。本文将深入浅出地介绍深度学习的基本概念,并通过Python代码实现一个简单的神经网络模型,帮助读者建立直观理解并迈出实践第一步。神经网络的基本原理神经网络的核心思想源自对人类大脑工作方式的简化模拟。想象一下,当你第一次学习骑自行车时,大脑会不断接收来自视觉、平衡感等多方面的信号,经过一系
- PyTorch深度学习入门与实战教程
openbiox
本文还有配套的精品资源,点击获取简介:深度学习是AI的核心技术,基于神经网络对数据建模以实现学习和预测。PyTorch是一个灵活易用的开源深度学习框架,适合初学者和研究人员进行实验开发。教程涵盖了从基础概念到模型训练、验证、测试的完整流程,包括张量操作、动态计算图、数据预处理、神经网络构建、优化器使用、训练循环、模型保存加载以及CNN和RNN等关键网络结构的应用实践。通过实例项目如文本分类、图像识
- AI入门书籍推荐
撬动未来的支点
深度学习深度学习人工智能
漫画机械学习入门((日)大关真之戴凤智张鸿涛孟宇(译))深度学习入门:基于Python的理论与实现深度学习的数学:使用Python语言[转换版]([美]罗纳德·T.纽塞尔)
- 手写数字识别(深度学习小实践)
我是来学习的你们要干什么
深度学习人工智能pycharmpython机器学习神经网络
小白学习ing文章目录前言一、神经网络学习与实践1.学习2.推理二、手写数字识别1、读入mnist数据集(学习)2、神经网络的推理改进→批处理前言非常简单的深度学习小实践,没有用框架,仅使用简单的Python。参考书籍《深度学习入门:基于Python的理论与实现》一、神经网络学习与实践1.学习训练数据进行权重参数的学习2.推理使用学习到的参数,对输入数据进行分类二、手写数字识别1、读入mnist数
- 计算机视觉深度学习入门(4)
yyc_audio
计算机视觉人工智能计算机视觉深度学习神经网络
在小型数据集上从头开始训练一个卷积神经网络利用少量数据来训练图像分类模型,这是一种很常见的情况。如果你从事与计算机视觉相关的职业,那么很可能会在实践中遇到这种情况。“少量”样本既可能是几百张图片,也可能是上万张图片。我们来看一个实例——猫狗图片分类,数据集包含5000张猫和狗的图片(2500张猫的图片,2500张狗的图片)。我们将2000张图片用于训练,1000张用于验证,2000张用于测试。将介
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri