- 深度学习入门篇:PyTorch实现手写数字识别
AI_Guru人工智能
深度学习pytorch人工智能
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著的成就。在众多的深度学习框架中,PyTorch以其动态计算图、易用性强和灵活度高等特点,受到了广泛的喜爱。本篇文章将带领大家使用PyTorch框架,实现一个手写数字识别的基础模型。手写数字识别简介手写数字识别是计算机视觉领域的一个经典问题,目的是让计算机能够识别并理解手写数字图像。这个问题通常作为深度学习入门的练习,因为
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- 02 使用 LSTM 进行时间序列预测
柒 魅。
时间序列预测lstm人工智能rnn
深度学习入门:使用LSTM进行时间序列预测引言深度学习在时间序列预测中展现出了强大的能力,尤其是长短期记忆(LSTM)网络。本文将为深度学习初学者介绍如何使用LSTM网络进行时间序列预测。我们将从基础知识讲起,提供代码示例,并解释每一步的技术细节。希望通过本文,大家能对LSTM有一个初步的了解,并能够在自己的项目中应用。1.什么是LSTM?LSTM(长短期记忆网络)是一种特殊的递归神经网络(RNN
- 【深度学习入门项目】一文带你弄清决策树(鸢尾花分类)
Better Rose
深度学习深度学习决策树分类
目录实验原理1.信息增益2.增益率3.基尼指数4.剪枝处理一、加载数据集二、配置模型三、训练模型四、模型预测五、模型评估六、决策树调参1.criterion2.max_depth实验原理决策树(decisiontree)是一种应用广泛的机器学习方法。顾名思义,决策树算法的表现形式可以直观理解为一棵树(可以是二叉树或非二叉树)。一棵决策树一般包含一个根节点、一系列内部节点和叶节点,一个叶节点对应一个
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 图像分割——基于pytorch的牙齿分割
苏俗
计算机视觉实战pytorch人工智能python
作为视觉基础任务的图像分割是大多数深度学习入门者的进一步学习,本文将用牙齿分割作为数据集,分享一下图像分割的训练内容。一、引入库importosimporttorchimporttorch.nnasnnfromPILimportImageimporttorch.optimasoptimimporttorch.nn.functionalasFfromtorchvisionimporttransfor
- 图像分类——基于pytorch的农作物病虫害检测
苏俗
计算机视觉实战分类pytorch数据挖掘
作为视觉基础任务的图像分类是大多数深度学习入门者的基础,本文将用包含33类的农作物病虫害数据集作为数据集,来过一遍图像分类任务的基本步骤。一、引入库importosimporttorchimportnumpyasnpfromPILimportImageimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportutilsfromco
- 人工智能深度学习入门指南
白猫a~
编程深度学习人工智能
随着人工智能(AI)技术的飞速发展,深度学习作为其重要分支,已经成为许多领域的研究热点。深度学习通过模拟人脑神经网络的运作方式,使得机器能够处理和分析海量的数据,从而实现更高级别的智能。本文将为你提供一份深度学习入门指南,帮助你快速掌握深度学习的基本知识和应用技能。1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。这些概念是深度学习的基
- 深度学习入门--参数的优化算法
我只钓小鱼
深度学习
1.梯度下降法(GradientDescent)梯度下降法的计算过程就是沿梯度下降的方向求解极小值,也可以沿梯度上升方向求解最大值。假设模型参数为θ\thetaθ,损失函数为J(θ)J(\theta)J(θ),损失函数关于参数的偏导数,也就是梯度为▽θJ(θ)\triangledown_\thetaJ(\theta)▽θJ(θ),学习率为α\alphaα,则使用梯度下降法更新参数为:梯度下降法目前
- 第五届脑电深度学习入门班(训练营:2023.9.12~9.20)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
- 深度学习入门笔记(九)自编码器
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
自编码器是一个无监督的应用,它使用反向传播来更新参数,它最终的目标是让输出等于输入。数学上的表达为,f(x)=x,f为自编码器,x为输入数据。自编码器会先将输入数据压缩到一个较低维度的特征,然后利用这个较低维度的特征重现输入的数据,重现后的数据就是自编码器的输出。所以,从本质上来说,自编码器就是一个压缩算法。自编码器由3个部分组成:编码器(Encoder):用于数据压缩。压缩特征向量(Compre
- 深度学习入门笔记(八)可以不断思考的模型:RNN与LSTM
zhanghui_cuc
深度学习笔记深度学习rnn笔记
8.1循环神经网络RNN之前学到的CNN和全连接,模型的输入数据之间是没有关联的,比如图像分类,每次输入的图片与图片之间就没有任何关系,上一张图片的内容不会影响到下一张图片的结果。但在自然语言处理领域,这就成了一个短板。RNN因此出现,它是一类用于处理序列数据的神经网络。其基本单元结构如下自底向上的三个蓝色的节点分别是输入层、隐藏层和输出层。U和V分别是连接两个层的权重矩阵。如果不考虑右边的棕色环
- 第四届脑电深度学习入门班(训练营:2023.7.4~7.12)
茗创科技
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
- 深度学习与计算机视觉:实例入门-第六章
javastart
图象处理深度学习tensorflowopencv2
给深度学习入门者的Python快速教程-番外篇之Python-OpenCV《深度学习与计算机视觉》全书网址:https://frombeijingwithlove.github.io…本篇原网址:https://zhuanlan.zhihu.com/p/24425116本篇是前面两篇教程:给深度学习入门者的Python快速教程-基础篇给深度学习入门者的Python快速教程-numpy和Matplo
- 《深度学习入门:基于python的理论与实现》读书笔记
莫里衰
求梯度的函数:f是需要求梯度的函数,x是求梯度的点image.pngdefnumerical_gradient(f,x):h=1e-4#0.0001grad=np.zeros_like(x)#生成和x形状相同的数组foridxinrange(x.size):tmp_val=x[idx]#f(x+h)的计算x[idx]=tmp_val+hfxh1=f(x)#f(x-h)的计算x[idx]=tmp_v
- 深度学习入门笔记(五)前馈网络与反向传播
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
接着上一节,本节讲解模型自我学习的数学计算过程究竟是怎么样的。5.1前馈网络一个最简单的前馈神经网络如图所示,对于每一个隐藏层,输入对应前一层每一个节点权重乘以节点输出值,输出则是经过激活函数(例如sigmoid函数)计算后的值。在这样的网络中,输入的数据x经过网络的各个节点之后,即可计算出最终的模型结果。这样就完成了一个最基本的前馈网络从输入到输出的计算过程。5.2反向传播在实际工作中这部分的内
- 深度学习入门(鱼书)
weixin_42963026
深度学习人工智能
学习笔记第3章神经网络3.1从感知机到神经网络3.1.1神经网络的例子图3-1中的网络一共由3层神经元构成,但实质上只有2层神经元有权重,因此将其称为“2层网络”。请注意,有的书也会根据构成网络的层数,把图3-1的网络称为“3层网络”。本书将根据实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去1后的数量)来表示网络的名称。3.1.2复习感知机3.1.3激活函数登场刚才登场的h(x)函数会将输
- 深度学习入门笔记(1)——什么是深度学习?
ZRX_GIS
深度学习深度学习数据挖掘机器学习神经网络pytorch
深度学习入门笔记(1)——什么是深度学习?在很多人眼里,深度学习(DeepLearning)是一个十分高大上的研究手段,它可以模拟人的判断,让数据处理和结果输出具有“人性”,在没接触过的人看来,深度学习简直是“玄学”范畴,网络一通,谁都不爱。但是,在所有人追捧深度学习的同时,对学习这一手段却是望而却步,更有甚者在网上买完“韭菜课”后,原理部分还没看完就不在继续学习。其实,说句实话,深度学习只是被过
- (课程笔记)深度学习入门 - 1 - OverView
牛顿第八定律
深度学习入门笔记笔记深度学习人工智能
一、机器学习算法的过程与结果1、首先要得到标签化数据集(DataSet),既然是标签化,那应该是监督学习模式,而且此处的数据集应该分化为训练用集(TrainSet)和测试用集(TestSet),训练用集用于训练最终的算法模型,而测试用集用于测试训练的算法模型是否性能良好,是否能满足实际需求;2、设置并给出机器学习的算法模型(Model);3、设置期望的损失函数(LossFcn)和优化器(Optim
- 深度学习入门笔记(6)—— Logistic Regression
cnhwl
深度学习入门笔记深度学习机器学习逻辑回归人工智能python
对比第三节中的Adaline和LogisticRegression,可以发现它们只有两点不同:1、激活函数,Adaline中的激活函数是恒等函数(线性),而LogisticRegression中的激活函数是Sigmoid函数(非线性);2、损失函数,Adaline中的损失函数是均方误差,而LogisticRegression中的损失函数则是交叉熵。Sigmoid函数如图所示,其值域为0到1,输入为
- 《深度学习入门》学习笔记
YY_oot
机器学习深度学习python神经网络人工智能
原书:《深度学习入门:基于Python的理论与实现》文章目录前言第一章python入门列表字典类numpy广播第二章感知机第三章神经网络激活函数第四章神经网络的学习损失函数求梯度第五章误差反向传播法第六章与学习相关的技巧6.1寻找最优参数6.3权重的初始值6.4正则化6.4超参数的验证第七章卷积神经网络卷积池化CNN的可视化代表性的CNN第八章深度学习提高识别精度VGGGoogLeNetResNe
- 深度学习入门笔记(三)常用AI术语
zhanghui_cuc
深度学习笔记人工智能深度学习笔记
本节我们介绍一些深度学习领域常用的术语。训练确定模型中的参数的过程,我们就称为“训练”。Epoch遍历一遍训练数据就叫作“一个Epoch”。训练模型的时候,我们要告诉模型预计训练多少个Epoch,但这个值并不是固定的,因为并没有一个准确的Epoch数能一定能得到一个比较好的模型。我们有一个标准:模型训练的Epoch数必须要让模型达到一个收敛的状态。并且为了模型有更多的选择,我们可以让模型收敛后,再
- 深度学习入门笔记4 深度神经网络
深度学习从入门到放弃
深度学习笔记神经网络深度学习人工智能机器学习算法
多层感知器在之前的课程中,我们了解到,感知器(指单层感知器)具有一定的局限——无法解决异或问题,即线性不可分的问题。将多个单层感知器进行组合,就可以得到一个多层感知器(MLP——Multi-LayerPerceptron)结构。多层感知器包含输入层,一个或多个隐藏层以及一个输出层。每层的神经元与下一层进行完全连接。如果网络中包含一个以上的隐层,则称其为深度人工神经网络。说明:通常我们说的神经网络的
- 深度学习入门笔记:第二章感知机
维持好习惯
深度学习深度学习笔记人工智能
深度学习入门笔记:第二章感知机笔记来源书籍:《深度学习入门:基于+Python+的理论与实现》文章目录深度学习入门笔记:第二章感知机前言为什么学习感知机2.1感知机是什么2.2简单逻辑电路2.2.1与门2.2.2与非门和或门2.3感知机实现2.3.1简单的实现2.3.2导入权重和偏置2.3.3使用权重和偏置的实现2.4感知机的局限性2.4.1异或门2.4.2线性和非线性2.5多层感知机2.5.1已
- 深度学习入门学习笔记之——神经网络
前丨尘忆·梦
tensorflow深度学习神经网络深度学习
神经网络上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。神经网络的出现就是为了解决刚才的坏消
- 深度学习入门笔记(二)神经元 激励函数 神经网络
花落雨微扬
神经网络网络深度学习人工智能机器学习
声明:本文内容源自《白话深度学习与tensorflow》高扬卫峥编著一书读书笔记!!!神经网络:神经网络又称为人工神经网络(artificialneutralnetwork,ANN)。神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系神经元:如上图所示是一个最简单的神经元,有一个输入,一个输出。我们现在所使用的神经元通常有两个部分组成,一个是“线性模型”,另一个是“激励函数”。假
- 2021-11-06《深度学习入门》笔记(二)
新手小嵩
深度学习系列笔记深度学习神经网络人工智能
第二章感知机感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。首先,感知机是什么?感知机接收多个输入信号,输出一个信号。上图是一个接收两个输入信号的感知机的例子。x1、x2是输入信号,y是输出信号,w1、w2是权重(w是weight的首字母)。图中的⚪称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1
- 深度学习入门笔记(二)神经元的结构
zhanghui_cuc
深度学习笔记深度学习笔记人工智能
神经网络的基本单元是神经元,本节我们介绍神经元的结构。2.1神经元一个神经元是由下面5部分组成的:输入:x1,x2,…,xk。权重:w1,w2,…,wk。权重的个数与神经元输入的个数相同。偏移项:可省略。激活函数:一般都会有,根据实际问题也是可以省略的。输出。2.2激活函数激活函数有很多种,不同的激活函数适用于不同的问题。二分类问题我们一般采用Sigmoid函数,多分类问题我们采用Softmax函
- 深度学习入门笔记(七)卷积神经网络CNN
zhanghui_cuc
深度学习笔记深度学习笔记cnn
我们先来总结一下人类识别物体的方法:定位。这一步对于人眼来说是一个很自然的过程,因为当你去识别图标的时候,你就已经把你的目光放在了图标上。虽然这个行为不是很难,但是很重要。看线条。有没有文字,形状是方的圆的,还是长的短的等等。看细节。纹理、颜色、方向等。卷积神经网络就是对上述过程的程序实现。7.1卷积卷积在卷积神经网络中的主要作用是提取图片的特征,同时保留原来图片中各个像素的相对位置(空间)关系。
- 深度学习入门笔记(八)实战经验
zhanghui_cuc
深度学习笔记深度学习笔记性能优化
前面几节介绍了很多理论,难免会好奇:理论如何与实战结合呢?本节我们就穿插一点实战经验,来换换脑子~1.显卡warmup进行深度学习训练和推理时,往往第一次运行的耗时比较高,这是因为显卡需要warm-up,就是“热身”,才能发挥出显卡的性能。关于热身,个人理解,显卡开始工作时控制单元需要对资源进行调度,例如分配warp等。这些应该都是在第一次推理的时候进行。类似的,举个栗子,在F1比赛中,每场赛车的
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri