E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
深度学习入门
深度学习入门
篇:PyTorch实现手写数字识别
这个问题通常作为
深度学习入门
的练习,因为
AI_Guru人工智能
·
2024-09-14 02:43
深度学习
pytorch
人工智能
深度学习入门
:使用 PyTorch 构建和训练你的第一个神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
Mr' 郑
·
2024-09-04 13:29
深度学习
pytorch
神经网络
02 使用 LSTM 进行时间序列预测
深度学习入门
:使用LSTM进行时间序列预测引言深度学习在时间序列预测中展现出了强大的能力,尤其是长短期记忆(LSTM)网络。本文将为深度学习初学者介绍如何使用LSTM网络进行时间序列预测。
柒 魅。
·
2024-09-03 15:39
时间序列预测
lstm
人工智能
rnn
【
深度学习入门
项目】一文带你弄清决策树(鸢尾花分类)
目录实验原理1.信息增益2.增益率3.基尼指数4.剪枝处理一、加载数据集二、配置模型三、训练模型四、模型预测五、模型评估六、决策树调参1.criterion2.max_depth实验原理决策树(decisiontree)是一种应用广泛的机器学习方法。顾名思义,决策树算法的表现形式可以直观理解为一棵树(可以是二叉树或非二叉树)。一棵决策树一般包含一个根节点、一系列内部节点和叶节点,一个叶节点对应一个
Better Rose
·
2024-08-24 03:07
深度学习
深度学习
决策树
分类
吴恩达深度学习-L1 神经网络和深度学习总结
1.1
深度学习入门
我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
向来痴_
·
2024-02-20 07:26
深度学习
人工智能
图像分割——基于pytorch的牙齿分割
作为视觉基础任务的图像分割是大多数
深度学习入门
者的进一步学习,本文将用牙齿分割作为数据集,分享一下图像分割的训练内容。
苏俗
·
2024-02-14 04:35
计算机视觉实战
pytorch
人工智能
python
图像分类——基于pytorch的农作物病虫害检测
作为视觉基础任务的图像分类是大多数
深度学习入门
者的基础,本文将用包含33类的农作物病虫害数据集作为数据集,来过一遍图像分类任务的基本步骤。
苏俗
·
2024-02-14 04:05
计算机视觉实战
分类
pytorch
数据挖掘
人工智能
深度学习入门
指南
本文将为你提供一份
深度学习入门
指南,帮助你快速掌握深度学习的基本知识和应用技能。1.了解深度学习基本概念在开始深度学习之前,你需要了解一些基本概念,如神经网络、激活函数、损失函数、反向传播等。
白猫a~
·
2024-02-11 23:00
编程
深度学习
人工智能
深度学习入门
--参数的优化算法
1.梯度下降法(GradientDescent)梯度下降法的计算过程就是沿梯度下降的方向求解极小值,也可以沿梯度上升方向求解最大值。假设模型参数为θ\thetaθ,损失函数为J(θ)J(\theta)J(θ),损失函数关于参数的偏导数,也就是梯度为▽θJ(θ)\triangledown_\thetaJ(\theta)▽θJ(θ),学习率为α\alphaα,则使用梯度下降法更新参数为:梯度下降法目前
我只钓小鱼
·
2024-02-11 03:53
深度学习
第五届脑电
深度学习入门
班(训练营:2023.9.12~9.20)
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
茗创科技
·
2024-02-09 21:12
深度学习入门
笔记(九)自编码器
自编码器是一个无监督的应用,它使用反向传播来更新参数,它最终的目标是让输出等于输入。数学上的表达为,f(x)=x,f为自编码器,x为输入数据。自编码器会先将输入数据压缩到一个较低维度的特征,然后利用这个较低维度的特征重现输入的数据,重现后的数据就是自编码器的输出。所以,从本质上来说,自编码器就是一个压缩算法。自编码器由3个部分组成:编码器(Encoder):用于数据压缩。压缩特征向量(Compre
zhanghui_cuc
·
2024-02-09 08:57
深度学习笔记
深度学习
笔记
人工智能
深度学习入门
笔记(八)可以不断思考的模型:RNN与LSTM
8.1循环神经网络RNN之前学到的CNN和全连接,模型的输入数据之间是没有关联的,比如图像分类,每次输入的图片与图片之间就没有任何关系,上一张图片的内容不会影响到下一张图片的结果。但在自然语言处理领域,这就成了一个短板。RNN因此出现,它是一类用于处理序列数据的神经网络。其基本单元结构如下自底向上的三个蓝色的节点分别是输入层、隐藏层和输出层。U和V分别是连接两个层的权重矩阵。如果不考虑右边的棕色环
zhanghui_cuc
·
2024-02-09 08:56
深度学习笔记
深度学习
rnn
笔记
第四届脑电
深度学习入门
班(训练营:2023.7.4~7.12)
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
茗创科技
·
2024-02-09 05:48
深度学习与计算机视觉:实例入门-第六章
给
深度学习入门
者的Python快速教程-番外篇之Python-OpenCV《深度学习与计算机视觉》全书网址:https://frombeijingwithlove.github.io…本篇原网址:https
javastart
·
2024-02-08 09:38
图象处理
深度学习
tensorflow
opencv2
《
深度学习入门
:基于python的理论与实现》读书笔记
求梯度的函数:f是需要求梯度的函数,x是求梯度的点image.pngdefnumerical_gradient(f,x):h=1e-4#0.0001grad=np.zeros_like(x)#生成和x形状相同的数组foridxinrange(x.size):tmp_val=x[idx]#f(x+h)的计算x[idx]=tmp_val+hfxh1=f(x)#f(x-h)的计算x[idx]=tmp_v
莫里衰
·
2024-02-07 21:32
深度学习入门
笔记(五)前馈网络与反向传播
接着上一节,本节讲解模型自我学习的数学计算过程究竟是怎么样的。5.1前馈网络一个最简单的前馈神经网络如图所示,对于每一个隐藏层,输入对应前一层每一个节点权重乘以节点输出值,输出则是经过激活函数(例如sigmoid函数)计算后的值。在这样的网络中,输入的数据x经过网络的各个节点之后,即可计算出最终的模型结果。这样就完成了一个最基本的前馈网络从输入到输出的计算过程。5.2反向传播在实际工作中这部分的内
zhanghui_cuc
·
2024-02-06 01:25
深度学习笔记
深度学习
笔记
人工智能
深度学习入门
(鱼书)
学习笔记第3章神经网络3.1从感知机到神经网络3.1.1神经网络的例子图3-1中的网络一共由3层神经元构成,但实质上只有2层神经元有权重,因此将其称为“2层网络”。请注意,有的书也会根据构成网络的层数,把图3-1的网络称为“3层网络”。本书将根据实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去1后的数量)来表示网络的名称。3.1.2复习感知机3.1.3激活函数登场刚才登场的h(x)函数会将输
weixin_42963026
·
2024-02-05 05:56
深度学习
人工智能
深度学习入门
笔记(1)——什么是深度学习?
深度学习入门
笔记(1)——什么是深度学习?
ZRX_GIS
·
2024-02-05 05:56
深度学习
深度学习
数据挖掘
机器学习
神经网络
pytorch
(课程笔记)
深度学习入门
- 1 - OverView
一、机器学习算法的过程与结果1、首先要得到标签化数据集(DataSet),既然是标签化,那应该是监督学习模式,而且此处的数据集应该分化为训练用集(TrainSet)和测试用集(TestSet),训练用集用于训练最终的算法模型,而测试用集用于测试训练的算法模型是否性能良好,是否能满足实际需求;2、设置并给出机器学习的算法模型(Model);3、设置期望的损失函数(LossFcn)和优化器(Optim
牛顿第八定律
·
2024-02-05 05:55
深度学习入门笔记
笔记
深度学习
人工智能
深度学习入门
笔记(6)—— Logistic Regression
对比第三节中的Adaline和LogisticRegression,可以发现它们只有两点不同:1、激活函数,Adaline中的激活函数是恒等函数(线性),而LogisticRegression中的激活函数是Sigmoid函数(非线性);2、损失函数,Adaline中的损失函数是均方误差,而LogisticRegression中的损失函数则是交叉熵。Sigmoid函数如图所示,其值域为0到1,输入为
cnhwl
·
2024-02-05 05:55
深度学习入门笔记
深度学习
机器学习
逻辑回归
人工智能
python
《
深度学习入门
》学习笔记
原书:《
深度学习入门
:基于Python的理论与实现》文章目录前言第一章python入门列表字典类numpy广播第二章感知机第三章神经网络激活函数第四章神经网络的学习损失函数求梯度第五章误差反向传播法第六章与学习相关的技巧
YY_oot
·
2024-02-05 05:55
机器学习
深度学习
python
神经网络
人工智能
深度学习入门
笔记(三)常用AI术语
本节我们介绍一些深度学习领域常用的术语。训练确定模型中的参数的过程,我们就称为“训练”。Epoch遍历一遍训练数据就叫作“一个Epoch”。训练模型的时候,我们要告诉模型预计训练多少个Epoch,但这个值并不是固定的,因为并没有一个准确的Epoch数能一定能得到一个比较好的模型。我们有一个标准:模型训练的Epoch数必须要让模型达到一个收敛的状态。并且为了模型有更多的选择,我们可以让模型收敛后,再
zhanghui_cuc
·
2024-02-05 05:54
深度学习笔记
人工智能
深度学习
笔记
深度学习入门
笔记4 深度神经网络
多层感知器在之前的课程中,我们了解到,感知器(指单层感知器)具有一定的局限——无法解决异或问题,即线性不可分的问题。将多个单层感知器进行组合,就可以得到一个多层感知器(MLP——Multi-LayerPerceptron)结构。多层感知器包含输入层,一个或多个隐藏层以及一个输出层。每层的神经元与下一层进行完全连接。如果网络中包含一个以上的隐层,则称其为深度人工神经网络。说明:通常我们说的神经网络的
深度学习从入门到放弃
·
2024-02-04 16:03
深度学习笔记
神经网络
深度学习
人工智能
机器学习
算法
深度学习入门
笔记:第二章感知机
深度学习入门
笔记:第二章感知机笔记来源书籍:《
深度学习入门
:基于+Python+的理论与实现》文章目录
深度学习入门
笔记:第二章感知机前言为什么学习感知机2.1感知机是什么2.2简单逻辑电路2.2.1与门
维持好习惯
·
2024-02-04 16:03
深度学习
深度学习
笔记
人工智能
深度学习入门
学习笔记之——神经网络
神经网络上一章我们学习了感知机。关于感知机,既有好消息,也有坏消息。好消息是,即便对于复杂的函数,感知机也隐含着能够表示它的可能性。上一章已经介绍过,即便是计算机进行的复杂处理,感知机(理论上)也可以将其表示出来。坏消息是,设定权重的工作,即确定合适的、能符合预期的输入与输出的权重,现在还是由人工进行的。上一章中,我们结合与门、或门的真值表人工决定了合适的权重。神经网络的出现就是为了解决刚才的坏消
前丨尘忆·梦
·
2024-02-04 16:32
tensorflow深度学习
神经网络
深度学习
深度学习入门
笔记(二)神经元 激励函数 神经网络
声明:本文内容源自《白话深度学习与tensorflow》高扬卫峥编著一书读书笔记!!!神经网络:神经网络又称为人工神经网络(artificialneutralnetwork,ANN)。神经网络是一种人类由于受到生物神经细胞结构启发而研究出的一种算法体系神经元:如上图所示是一个最简单的神经元,有一个输入,一个输出。我们现在所使用的神经元通常有两个部分组成,一个是“线性模型”,另一个是“激励函数”。假
花落雨微扬
·
2024-02-04 16:32
神经网络
网络
深度学习
人工智能
机器学习
2021-11-06《
深度学习入门
》笔记(二)
第二章感知机感知机也是作为神经网络(深度学习)的起源的算法。因此,学习感知机的构造也就是学习通向神经网络和深度学习的一种重要思想。首先,感知机是什么?感知机接收多个输入信号,输出一个信号。上图是一个接收两个输入信号的感知机的例子。x1、x2是输入信号,y是输出信号,w1、w2是权重(w是weight的首字母)。图中的⚪称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重(w1
新手小嵩
·
2024-02-04 16:02
深度学习系列笔记
深度学习
神经网络
人工智能
深度学习入门
笔记(二)神经元的结构
神经网络的基本单元是神经元,本节我们介绍神经元的结构。2.1神经元一个神经元是由下面5部分组成的:输入:x1,x2,…,xk。权重:w1,w2,…,wk。权重的个数与神经元输入的个数相同。偏移项:可省略。激活函数:一般都会有,根据实际问题也是可以省略的。输出。2.2激活函数激活函数有很多种,不同的激活函数适用于不同的问题。二分类问题我们一般采用Sigmoid函数,多分类问题我们采用Softmax函
zhanghui_cuc
·
2024-02-04 16:30
深度学习笔记
深度学习
笔记
人工智能
深度学习入门
笔记(七)卷积神经网络CNN
我们先来总结一下人类识别物体的方法:定位。这一步对于人眼来说是一个很自然的过程,因为当你去识别图标的时候,你就已经把你的目光放在了图标上。虽然这个行为不是很难,但是很重要。看线条。有没有文字,形状是方的圆的,还是长的短的等等。看细节。纹理、颜色、方向等。卷积神经网络就是对上述过程的程序实现。7.1卷积卷积在卷积神经网络中的主要作用是提取图片的特征,同时保留原来图片中各个像素的相对位置(空间)关系。
zhanghui_cuc
·
2024-02-03 03:03
深度学习笔记
深度学习
笔记
cnn
深度学习入门
笔记(八)实战经验
前面几节介绍了很多理论,难免会好奇:理论如何与实战结合呢?本节我们就穿插一点实战经验,来换换脑子~1.显卡warmup进行深度学习训练和推理时,往往第一次运行的耗时比较高,这是因为显卡需要warm-up,就是“热身”,才能发挥出显卡的性能。关于热身,个人理解,显卡开始工作时控制单元需要对资源进行调度,例如分配warp等。这些应该都是在第一次推理的时候进行。类似的,举个栗子,在F1比赛中,每场赛车的
zhanghui_cuc
·
2024-02-03 03:03
深度学习笔记
深度学习
笔记
性能优化
深度学习入门
笔记(六)线性回归模型
本节,我们用线性回归为例子,回顾一些基本概念6.1相关性相关性的取值范围是-1到1,越接近1或者-1代表越相关,越接近0则越不相关。相关系数大于0称为正相关,小于0称为负相关。假如A与B正相关,则是说A(B)会随着B(A)的增大而增大,减小而减小。假如A与B负相关,则是说A(B)会随着B(A)的增大而减小,减小而增大。皮尔逊系数就是常用的相关性方法。6.2什么是线性回归顾名思义,就是用一种线性关系
zhanghui_cuc
·
2024-02-03 03:02
深度学习笔记
深度学习
笔记
线性回归
深度学习入门
笔记(四)函数与优化方法
深度学习有三大部分模型表征(包括模型设计、网络表示等)模型评估(上一篇文章提到的准确召回和损失函数等)优化算法(模型如何学习或更新)本节我们就来介绍模型是如何学习或更新的。4.1损失函数模型的学习,实际上就是对参数的学习。参数学习的过程需要一系列的约束,这个约束就是损失函数。以函数曲线拟合为例,对于每一个样本点,真实值和拟合值之间就存在了一个误差,我们可以通过一个公式来表示这个误差:L(x)=(F
zhanghui_cuc
·
2024-02-03 03:30
深度学习笔记
深度学习
笔记
人工智能
深度学习入门
资料整理
-知乎
深度学习入门
基础讲义_shuzfan的博客-CSDN博客_
深度学习入门
神经网络15分钟入门!足够通俗易懂了吧-知乎深度学习基础知识点梳理-知乎
AI视觉网奇
·
2024-02-02 13:13
应该看的算法
深度学习基础
深度学习入门
[笔记]
深度学习入门
基于Python的理论与实现(六)
6.与学习相关的技巧6.1参数的更新神经网络学习的目的是找到使损失函数尽可能小的参数,这个过程叫最优化_(optimization_),但是由于神经网络的参数空间复杂,所以很难求最优解.前几章,我们使用参数的梯度,沿梯度的反向更新参数,重复多次,从而逐渐靠近最优参数,这个过程称为随机梯度下降_(stochasticgradientdescent_),简称SGD6.1.1探险家的故事6.1.2SGD
飞鸟malred
·
2024-01-28 10:02
ai
笔记
深度学习
python
深度学习入门
笔记(7)—— Multinomial Logistic Regression / Softmax Regression
首先介绍一个非常著名的多分类数据集MNIST,也就是0到9的手写数字数据集。每个图像都是28*28,用于Pytorch数据读取的格式是NCHW,即Number、Channel、Height、Weight。读取图像之后,就能看到一个只有单通道的(灰度)图像,实际上就是一行行像素值的组合,用于SoftmaxRegression时输入得是一个向量,所以要将一行行的像素进行拼接,成为一个长的向量。同时,将
cnhwl
·
2024-01-27 14:20
深度学习入门笔记
深度学习
机器学习
人工智能
pytorch
算法
《机器学习》笔记-聚类(9)
对于自己,经历了一段时间的系统学习(参考《机器学习/
深度学习入门
资料汇总》),现在计划重新阅读《机器学习》[周志华]和《深度学习》[Goodfellowetal]这两本书,并在阅读的过程中进行记录和总结
EddyLiu2017
·
2024-01-27 14:04
深度学习入门
必知必会
深度学习是机器学习领域的一个重要分支,它通过构建和训练神经网络模型来实现智能化任务。下面是入门深度学习的几个步骤:学习基础知识:了解机器学习和神经网络的基本概念,包括线性代数、概率论和统计学等数学基础知识。掌握编程技能:学习一种主流的编程语言,如Python,以及相关的库和框架,如NumPy、Pandas和TensorFlow等。这些工具将帮助你在实践中应用深度学习算法。学习深度学习理论:了解深度
诗雅颂
·
2024-01-26 19:31
深度学习
tensorflow
机器学习
神经
网络
图像分类保姆级教程-
深度学习入门
教程(附代码)
图像分类是计算机视觉领域中的一个重要任务。它的目的是将输入的图像归类到预定义的类别中。这个任务在过去被认为是非常具有挑战性的,因为图像的特征非常复杂,而且存在很多种不同的变化方式,例如光照、角度、遮挡等等。然而,随着深度学习的发展,图像分类问题已经得到了显著的改善。深度学习模型可以自动地从大量的数据中学习到特征表示,并且能够处理高维度数据的非线性关系,这使得对于复杂的图像分类问题更加容易解决。在深
毕设阿力
·
2024-01-22 10:27
分类
深度学习
数据挖掘
吴恩达-
深度学习入门
-第二周课后测验题
前情须知1、本文参考CSDN博主何宽老师的文章,仅用于个人学习使用,将答案部分单独摘出放在最后,方便进行自我检测。参考文章链接:https://blog.csdn.net/u013733326/article/details/798658582、第二周分为测验题和编程题两部分目录前情须知一、中文题目二、英文题目三、答案一、中文题目1、神经元节点计算什么?【 】神经元节点先计算激活函数,再计算线性函
?LAST
·
2024-01-22 03:55
吴恩达深度学习入门
深度学习
人工智能
吴恩达-
深度学习入门
-第一周课后测验题
一、文章简介本篇文章主要内容为第一周课程结束后的十几道测试题,在其他大佬的文章中看到题目后,感觉因为有答案所以不太利于自己的思考,所以进行一下简单的编辑工作,将答案放在文章最后。文章参考:https://blog.csdn.net/u013733326/article/details/79862336仅做学习使用。二、题目题目分为中文版和英文版,根据自己喜好选择观看即可。英文版:Week1Quiz
?LAST
·
2024-01-22 03:25
吴恩达深度学习入门
深度学习
人工智能
深度学习入门
——卷积神经网络CNN基本原理+实战
CNN基本结构卷积神经网络(ConvolutionalNeuralNetwork,CNN)是深度学习技术中最基础的网络结构,模拟人脑工作,具备强大的特征学习能力。CNN结构主要由两部分组成:特征提取部分和分类部分\color{blue}{特征提取部分和分类部分}特征提取部分和分类部分。特征提取部分网络将执行一系列卷积和池化操作。分类部分使用全连接层作为一个分类器,使用特征提取部分提取的特征为图像上
AI小白龙*
·
2024-01-21 07:18
深度学习
cnn
人工智能
pytorch
神经网络
机器学习
python
(一)
深度学习入门
:感知机模型
一、感知机定义二、感知机与逻辑电路三、感知机的局限性四、感知机的优越性前言感知机是深度学习算法的基本单元,本文简单介绍了感知机的定义,探究了感知机与逻辑门电路之间的联系,在此基础上解释了感知机的局限性和优越性,为神经网络的学习提供了先备知识。一、感知机定义感知机是一种最简单的二分类线性分类模型,它是神经网络的基石。它通过将样本的特征与权重相乘并进行加权求和,当结果大小超过特定的阈值时才会输出1,否
油炸大聪明
·
2024-01-19 17:04
深度学习入门
深度学习
人工智能
(二)
深度学习入门
:神经网络的前向传播
目录前言一、神经网络的基本结构二、激活函数三、神经网络输出层的设计前言上一篇我们解决了感知机模型的基本定义和应用,本次我们在感知机的基础上探讨感知机构成神经网络的一些细节,了解神经网络前向传播的过程,重点理解激活函数存在的意义。一、神经网络的基本结构在如图所示神经网络结构图中,我们把最左边的一列称为输入层,最右边一列称为输出层,在输入层和输出层中间的网络层称为中间层,中间层可以有多个。在实际使用过
油炸大聪明
·
2024-01-19 17:33
深度学习入门
深度学习
神经网络
人工智能
【
深度学习入门
】深度学习基础概念与原理
*(本篇文章旨在帮助新手了解深度学习的基础概念和原理,不深入讨论算法及核心公式)目录一、深度学习概述1、什么是深度学习?2、深度学习与传统机器学习的区别3、深度学习的应用领域二、深度学习基本原理1、神经网络的基本结构(1)什么是神经网络?(2)神经网络基本结构2、激活函数的作用和选择(1)什么是激活函数?(2)激活函数的作用与选择3、损失函数的定义和选择(1)什么是损失函数(2)损失函数的选择4、
代码骑士
·
2024-01-18 07:38
#
深度学习
人工智能
【OUC
深度学习入门
】第6周学习记录:Vision Transformer & Swin Transformer & ConvNeXt
Part1VisionTransformer1网络结构ViT模型不仅适用于NLP领域,在CV领域也能取得不错的效果。在原论文中,作者对比了三种模型,一种是ViT,即“纯”Transformer模型;一种是ResNet网络;另一种是Hybrid模型,它是将传统CNN和Transformer混合起来的模型。最终发现,当迭代次数多时,ViT模型的精度会超过混合模型。ViT(VisionTransform
深蓝与夜的呼吸
·
2024-01-17 19:41
深度学习
transformer
学习
深度学习入门
基于Python的理论与实现(第3章 神经网络)
image.png图3-1中的网络一共由3层神经元构成,但实质上只有2层神经元有权重,因此将其称为“2层网络”。“朴素感知机”是指单层网络,指的是激活函数使用了阶跃函数的模型。“多层感知机”是指神经网络,即使用sigmoid函数等平滑的激活函数的多层网络。sigmoid函数defsigmoid(x):return1/(1+np.exp(-x))sigmoid具有平滑性,对神经网络的学习具有重要意义
无思不晓
·
2024-01-17 12:16
第五届脑电
深度学习入门
班(训练营:2023.9.12~9.20)
茗创科技专注于脑科学数据处理,涵盖(EEG/ERP,fMRI,结构像,DTI,ASL,,FNIRS)等,欢迎留言讨论及转发推荐,也欢迎了解茗创科技的脑电课程,数据处理服务及脑科学工作站销售业务,可添加我们的工程师(微信号MCKJ-zhouyi或17373158786)咨询。★课程简介★脑电图(Electroencephalogram,EEG)是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映,包
茗创科技
·
2024-01-17 03:08
深度学习 基本概念
http://www.sohu.com/a/142551924_390227
深度学习入门
必须理解这25个概念https://blog.csdn.net/pangjiuzala/article/details
不存在的里皮
·
2024-01-16 22:38
深度学习入门
概述此学习路径专为有兴趣熟悉和探索深度学习主题的任何人而设计。目前,该学习路径涵盖了深度学习的基础知识,但将来将得到增强,以涵盖有监督和无监督的深度学习概念。深度学习基础知识了解深度学习与机器学习的关系,探索其基础知识,并了解在某些应用中使用深度学习算法的优势。技能水平初学者估计完成时间约2小时。学习目标通过此学习路径,你将获得:对深度学习概念的理解对深度学习架构的理解深度学习框架的比较如何在Te
AI-智能
·
2024-01-16 10:13
深度学习
人工智能
机器学习
PyTorch深度学习快速入门
本文是基于B站博主“我是土堆”发布的
深度学习入门
教程所编写的相关笔记,主要用于Python小白快速入门深度学习,了解PyTorch的相关理论知识及逻辑代码。
睡不醒的毛毛虫
·
2024-01-14 02:43
PyTorch深度学习快速入门
深度学习
pytorch
python
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他