- [python][whl]pyltp的whl格式文件所有版本下载地址汇总
FL1623863129
Pythonpython开发语言
pyltp:Python中的中文自然语言处理工具在数字化时代,自然语言处理(NLP)成为了与机器进行交互的关键技术。对于中文,由于其独特的语言结构和复杂性,专门的工具和库显得尤为重要。pyltp正是这样一个为中文NLP任务设计的Python库,它封装了LTP(LanguageTechnologyPlatform)的核心功能,使得开发者能够轻松地在Python环境中进行中文文本的处理和分析。pylt
- Java 大视界 -- Java 大数据文本分析与自然语言处理:从文本挖掘到智能对话
一只蜗牛儿
java大数据自然语言处理
在当今的信息化时代,数据成为了重要的资源。特别是文本数据,随处可见,如社交媒体、新闻网站、技术文档、客户反馈等,这些都包含着大量的潜在信息。因此,如何从海量的文本中提取有价值的信息,成为了大数据分析领域的重要课题。Java作为一种高效、灵活的编程语言,在大数据文本分析与自然语言处理(NLP)中发挥着至关重要的作用。本文将介绍如何利用Java开发大数据文本分析和自然语言处理(NLP)应用,带领你从文
- 未登录词 Out-of-Vocabulary, OOV
risc123456
nlp
未登录词oov未登录词(Out-of-Vocabulary,OOV)是指在训练数据中没有出现过的词汇,但在测试数据或实际应用中却出现了。未登录词是自然语言处理(NLP)任务中常见的挑战之一,因为它们可能导致模型无法正确处理或理解这些词汇,从而影响模型的性能。以下是一些关于未登录词的详细解释和处理方法:###未登录词的来源1.**罕见词**:在训练数据中出现次数非常少的词,可能在训练过程中被忽略或未
- 使用Google Vertex AI Search进行企业级高级搜索
hgSdaegva
人工智能python
技术背景介绍GoogleVertexAISearch(前称为EnterpriseSearchonGenerativeAIAppBuilder)是GoogleCloud提供的VertexAI机器学习平台的一部分。VertexAISearch允许组织快速建立由生成式AI驱动的搜索引擎,为客户和员工提供服务。它基于各种GoogleSearch技术,包括语义搜索,通过使用自然语言处理和机器学习技术来推断内
- 使用OpenAI Chat模型进行自然语言处理的实战指南
GEAWfaacc
自然语言处理easyui人工智能python
在本文中,我们将详细介绍如何利用OpenAI的Chat模型进行自然语言处理任务。我们将涵盖从API配置到实际应用的一整套流程,并提供可运行的代码示例来帮助大家上手。如果你对AI对话模型的实际应用感兴趣,那么这篇文章将非常适合你。一、技术背景介绍OpenAI的Chat模型是一类专门用于对话任务的预训练语言模型。它们可以处理多种输入类型,支持丰富的功能调用,适用于各种自然语言处理场景。从翻译到对话生成
- 大语言模型原理与工程实践:预训练数据构建
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:预训练数据构建1.背景介绍大语言模型(LargeLanguageModels,LLMs)近年来在自然语言处理(NLP)领域取得了显著的进展。诸如GPT-3、BERT等模型在各种任务中表现出色,从文本生成到情感分析,再到机器翻译,几乎无所不能。这些模型的成功很大程度上依赖于预训练数据的质量和规模。预训练数据的构建不仅影响模型的性能,还决定了模型的泛化能力和应用范围。在本文中
- 大语言模型原理与工程实践:网页数据
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:网页数据1.背景介绍在当今信息爆炸的时代,网页数据成为了大数据的重要来源之一。网页数据不仅包含了丰富的文本信息,还包括了图像、视频、音频等多媒体内容。大语言模型(LargeLanguageModels,LLMs)作为自然语言处理(NLP)领域的前沿技术,能够从海量的网页数据中提取有价值的信息,进行文本生成、情感分析、问答系统等多种任务。大语言模型的成功离不开深度学习技术的
- 大语言模型原理与工程实践:案例介绍
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:案例介绍作者:禅与计算机程序设计艺术近年来,随着深度学习技术的快速发展,大语言模型(LargeLanguageModel,LLM)在自然语言处理领域取得了突破性进展,展现出强大的文本生成、理解和推理能力。从智能对话到机器翻译,从代码生成到诗歌创作,LLM正在深刻地改变着我们与信息交互的方式,并为人工智能应用开拓了更广阔的空间。1.背景介绍1.1大语言模型的兴起大语言模型的
- Jetbrains Ai Assistant插件越来越好用了
Ai 编码
Ai编码工具人工智能android
在IntelliJIDEA中,JetBrainsAI是JetBrains集成的人工智能功能,旨在提高开发效率,辅助开发者更智能地编写、优化和理解代码。JetBrainsAI作为IntelliJIDEA的一部分,通过自然语言处理和机器学习技术,提供了许多智能代码建议和自动化功能。点击这里:获取JetbrainsAiAssistant插件 以下是JetBrainsAI在IntelliJIDEA中的一
- AI驱动电商搜索导购:技术创新与应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
文章标题《AI驱动电商搜索导购:技术创新与应用》关键词:人工智能,电商搜索导购,机器学习,深度学习,推荐系统,自然语言处理,个性化搜索,图像识别,应用案例,未来展望。摘要:本文旨在探讨人工智能(AI)在电商搜索导购领域的应用,分析其技术创新和实际应用案例,探讨AI驱动电商搜索导购的未来发展趋势。文章首先介绍了AI在电商搜索导购中的角色和优势,然后深入探讨了AI基础理论和搜索导购技术原理。接着,文章
- WebRover :一个功能强大的 Python 库,用于从 Web 内容生成高质量的数据集。
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 探索LangChain中OpenAI模型的token级log probabilities
jkgSFS
langchaineasyui前端python
在AI模型的开发和调试中,了解每个生成token的概率是非常有用的。这些信息可以帮我们理解模型的决策过程,识别可能的错误。本篇文章将介绍如何通过LangChain与OpenAI整合来获取这些token级的logprobabilities。技术背景介绍什么是LogProbabilities?在自然语言处理中,logprobabilities是一种对token生成概率的度量。通常,这个值越高,表示生成
- 使用VolcEngine Maas Chat进行语言模型对话的入门指南
dagGAIYD
语言模型人工智能自然语言处理python
技术背景介绍VolcEngineMaasChat模型提供了一种便捷的方式进行对话接口的设计与实现,特别是对于自然语言处理(NLP)应用。通过简单的API调用,开发者可以轻松集成强大的AI对话能力到他们的应用中。本文将指导您如何使用VolcEngineMaasChat进行对话交互。核心原理解析VolcEngineMaasChat利用大语言模型来处理和生成自然语言,在接收到用户的输入后,模型会通过分析
- 使用ModelScope实现高效句嵌入生成
dagGAIYD
python
技术背景介绍在自然语言处理(NLP)任务中,向量化文本(嵌入)是许多下游任务(如语义搜索、文本分类、问答系统等)的核心步骤之一。通过将文本转换为密集向量表示,我们可以在高维向量空间中构建更加高效的表示和检索算法。ModelScope是阿里云开源的一个模型和数据集管理平台,提供了大量预训练模型,涵盖了各种领域和任务。ModelScopeEmbeddings是一个与LangChain社区集成的工具类,
- Transformer架构原理详解:多头注意力(MultiHead Attention)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,多头注意力,Multi-HeadAttention,机器翻译,自然语言处理,深度学习1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展。传统的循环神经网络(RNN)在处理长序列数据时存在效率低下和梯度消失等问题。为了解决这些问题,谷歌于2017年提出了Transformer架构,并将其应用于机器翻译任务,取得了突破性的成果。Transformer的核心创
- AI 对程序员的冲击剖析
程序员WANG
工具人工智能机器学习语言模型
摘要随着人工智能(AI)技术的飞速发展,其影响力已逐渐渗透到各个行业,程序员群体也面临着前所未有的冲击。本文深入探讨AI对程序员在编程工作模式、技能需求以及职业发展路径等方面带来的冲击,并分析程序员应对这些冲击的策略与方向,旨在为程序员在AI时代的职业发展提供参考。一、引言AI技术近年来取得了突破性进展,其在自然语言处理、机器学习、深度学习等领域的应用日益广泛。在软件开发领域,AI不再仅仅是辅助工
- WebRover: 专为训练大型语言模型和 AI 应用程序而设计的 Python 库
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 从自然语言到提示词:编程范式的革命
AI天才研究院
计算机软件编程原理与应用实践大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
从自然语言到提示词:编程范式的革命关键词:编程范式、自然语言处理、提示词编程、人工智能、算法原理摘要:随着人工智能技术的不断发展,编程范式正经历着从自然语言处理向基于提示词的人工智能编程模式的转变。本文旨在探讨这一转变的背景、动机、原理及其在软件开发实践和工程方法论中的影响。文章将逐步分析自然语言处理和提示词编程的核心概念,讲解算法原理和数学模型,并通过实际案例展示编程范式转变的应用效果。第一部分
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- 多头潜在注意力(MLA)是怎么来的,什么原理,能用简单的示例解释么
百态老人
学习
多头潜在注意力(Multi-HeadLatentAttention,简称MLA)是一种改进的注意力机制,旨在提高自然语言处理(NLP)模型的推理效率和性能。其核心思想是通过低秩联合压缩键(Key)和值(Value),减少推理过程中所需的内存和计算资源,从而实现更高效的处理。MLA的原理在传统的多头注意力机制(MHA)中,每个输入token的键和值需要被缓存,这导致了巨大的内存开销。具体来说,对于每
- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- Transformer模型全面解析:工作原理、应用与未来展望*
泰山AI
AI大模型应用开发transformer
概述:深入探讨Transformer模型的工作原理,分析其在NLP领域的应用场景,并展望其未来发展趋势。本文为您提供关于Transformer模型的全面指南。正文Transformer模型全面解析:工作原理、应用与未来展望在人工智能的浪潮中,Transformer模型以其强大的性能和广泛的应用场景,成为了自然语言处理(NLP)领域的一颗璀璨明星。本文将对Transformer模型进行深入剖析,从工
- 一切皆是映射:Transformer架构全面解析
AI天才研究院
计算大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
背景介绍自2017年,Transformer(自注意力机制)架构的问世以来,它已经成为自然语言处理(NLP)领域的主流技术之一。Transformer架构的出现,使得自然语言处理的任务变得更加简单、高效,同时也为许多其他领域提供了灵感。通过深入剖析Transformer,我们可以更好地理解其核心概念、原理和实际应用场景。这篇文章将全面解析Transformer架构,从核心概念到实际应用,帮助读者深
- 大语言模型原理基础与前沿 指令生成
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大语言模型、指令生成、Transformer、BERT、GPT、LLaMA、Fine-tuning、PromptEngineering1.背景介绍近年来,大语言模型(LargeLanguageModels,LLMs)在自然语言处理领域取得了令人瞩目的成就。从文本生成、翻译到问答和代码编写,LLMs展现出强大的能力,深刻地改变了我们与语言交互的方式。指令生成作为LLMs应用的重要方向之一,旨在通过明
- 使用ChatLlamaCpp和Llama CPP Python进行聊天模型集成
AWsggdrg
llamapython开发语言
在这篇文章中,我们将探讨如何使用ChatLlamaCpp和LlamaCPPPython库来搭建一个强大的聊天模型。我们将详细讲解如何进行模型集成,并提供完整的代码示例以帮助您快速上手。技术背景介绍随着自然语言处理技术的不断发展,越来越多的应用需要集成复杂的聊天模型以提高交互能力。ChatLlamaCpp是一个基于LlamaCPPPython库构建的聊天模型,支持多种功能调用和结构化输出,非常适合用
- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- Transformer入门(1)transformer及其编码器-解码器
通信仿真实验室
GoogleBERT构建和训练NLP模型berttransformer人工智能NLP自然语言处理
文章目录1.Transformer简介2.Transformer的编码器-解码器架构3.transformer的编码器1.Transformer简介Transformer模型是一种用于自然语言处理的机器学习模型,它在2017年由Google的研究者提出,并在论文《AttentionisAllYouNeed》中详细描述。Transformer模型的核心创新在于其采用了自注意力(self-attent
- Transformer架构原理详解:编码器(Encoder)和解码器(Decoder)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,编码器,解码器,自注意力机制,多头注意力,位置编码,序列到序列,自然语言处理1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展,其中Transformer架构扮演着至关重要的角色。自2017年谷歌发布了基于Transformer的机器翻译模型BERT以来,Transformer及其变体在各种NLP任务上取得了突破性的成果,例如文本分类、问答系统、文本摘要
- 使用Amazon Bedrock API调用Anthropic的Claude模型
dwa46a56w4d
easyui前端javascriptpython
在AI模型应用领域,亚马逊的BedrockAPI提供了便捷的方式来访问诸如Anthropic的Claude这样强大的模型。通过AmazonBedrock,开发者可以在云端直接调用Claude进行各种自然语言处理任务。本指南将引导您如何在Python中通过Bedrock来使用Claude模型。技术背景介绍Claude是由Anthropic开发的AI模型,提供强大的自然语言处理能力。通过AmazonB
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持