前景回顾:
【手把手TensorFlow】一、从开始使用TensorFlow到弄清楚“搭建神经网络套路”
【手把手TensorFlow】二、神经网络优化
定义参数w和偏置b,定义从输入到输出的网络结构
#前向传播过程
def forward(x,regularizer):
w=get_weight()
b=get_bias()
y=
def get_weight(shape,regularizer):
...
def get_bias(shape):
...
反向传播过程完成网络参数的优化
def backward(mnist):
x = tf.placeholder(dtype, shape)
y_= tf.placeholder(dtype, shape)
y=forward()
global_step=...
loss=...
train_step=tf.train.GradientDescentOptimizer(learning_rate)
.minmize(loss,global_step=global_step)
#实例化saver,保存模型
saver=tf.train.Saver()
with tf.Session() as sess:
#初始化模型参数
tf.initialize_all_variables().run()
#训练模型
for i in range(STEPS):
sess.run(train_step , feed_dict={x: , y_: })
if i% 轮数==0:
print
saver.save()
在前向传播过程中设置正则化参数regularization为1时,表明反向传播过程中虚化模型参数时,需加入正则化项。
首先,在forward.py中加入:
if regularizer != None:
tf.add_to_collection('losses',
tf.contrib.layers.12_regularizer(regularizer)(w))
其次,要在backword.py中加入:
#交叉熵+softmax
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y
,labels=tf.argmax(y_,1))
#均值
cem=tf.reduce_mean(ce)
#损失函数
loss=cem + tf.add_n(tf.get_collection('losses'))
tf.nn.sparse_softmax_cross_entropy_with_logits()
表示Softmax()函数和交叉熵一起使用。
指数衰减学习率使模型接近收敛时学习率下降,使训练后期不会有太大波动。
在反向传播backward.py中加入:
learning_rate=tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
LEARNING_RATE_STEP,LEARNING_RATE_DECAY,
staircase=True
)
LEARNING_RATE_STEP表示多少轮后更新一次学习率。
LEARNING_RATE_DECAY为指数衰减率。
LEARNING_RATE_BASE为学习率基数。
staircase=True表示取整数,False表示取平滑曲线。
滑动平均记录一段时间中所有参数w和b各自的平均值,使模型在测试集上表现的更加健壮。
需要在backword.py中加入:
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY,global_step)
ema_op = ema.applay(tf.trainable_variables())
with tf.control_dependencies([train_step,ema_op]):
train_op=tf.no_op(name='train')
LEARNING_RATE_DECAY为指数衰减率。
测试工程用于验证神经网络的性能,结构如下:
①模型验证函数
def test(mnist):
with tf.Graph().as_default() as g:
#占位
x= tf.placeholder(dtype,shape)
y_=tf.placeholder(dtype,shape)
#前向传播得到预测结果y
y= mnist_forward.forward(x,None)
#实例化可还原欢动平均的saver
ema= tf.train.ExponentialMovingAverage(欢动衰减率)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore)
#计算正确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_ , 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
while(True):
with tf.Session() as sess:
#加载训练好的模型
ckpt=tf.train.get_checkpoint_state(存储路径)
#如果已有ckpt模型则恢复
if ckpt and ckpt.model_checkpoint_path:
#恢复会话
saver.restore(sess,ckpt.model_checkpoint_path)
#恢复轮数
global_step=ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
#计算准确率
accuracy_score=sess.run(accuracy, feed_dict={x:测试数据, y_:测试标签})
#打印提示
print("After %s training step(s) , test_accuracy=%g" (global_step,accuracy_score))
else:
print('No checkpoint file found')
return
其次,需要定制main()函数
def main():
#加载测试集
mnist=input_data.read_data_sets("./data/",one_hot=True)
#调用定义好的测试函数test()
test(mnist)
if __name__ == '__main__':
main()
通过对测试数据的预测得到的准确率,从而判断出训练出的神经网络模型的性能好坏。
#coding:utf-8
import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
tf.reset_default_graph()
#设置参数w
def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape, initializer=tf.truncated_normal_initializer(stddev=0.1))
if regularizer != None: tf.add_to_collection('losses', regularizer(weights))
return weights
#定义前向传播
def forward(input_tensor, regularizer):
with tf.variable_scope('layer1'):
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE], initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases)
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE], initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases
return layer2
#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "MNIST_model/"
MODEL_NAME = "mnist_model"
def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE], name='y-input')
regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
y = mnist_forward.forward(x, regularizer)
global_step = tf.Variable(0, trainable=False)
# 定义损失函数、学习率、滑动平均操作以及训练过程。
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY,
staircase=True)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variables_averages_op]):
train_op = tf.no_op(name='train')
# 初始化TensorFlow持久化类。
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run()
#断点续训
ckpt=tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess,ckpt.model_checkpoint_path)
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 == 0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)
def main(argv=None):
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
train(mnist)
if __name__ == '__main__':
main()
#coding:utf-8
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import mnist_backward
#每隔10秒钟加载一次新生成的模型进行测试
EVAL_INTERVAL_SECS = 10
#测试
def evaluate(mnist):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE], name='y-input')
validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
y = mnist_forward.forward(x, None)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#加载移动平均值
variable_averages = tf.train.ExponentialMovingAverage(mnist_backward.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
while True:
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(mnist_backward.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy, feed_dict=validate_feed)
print("After %s training step(s), validation accuracy = %g" % (global_step, accuracy_score))
else:
print('No checkpoint file found')
return
time.sleep(EVAL_INTERVAL_SECS)
def main(argv=None):
mnist = input_data.read_data_sets("../../../datasets/MNIST_data", one_hot=True)
evaluate(mnist)
if __name__ == '__main__':
main()
搭建神经网络步骤最后总结:
1.前向传播
2.反向传播
3.正则化,指数衰减,滑动平均方法的设置(正则化参数在前向传播和反向传播中都加入,其它在反向传播中加入)
4.测试过程
Variable has existed/does not exist ,Did you mean to set reuse=True/None?
解决:
错误原因:自动保存了上一次的变量,导致变量名重复。
解决方法:在forward.py开头加入tf.reset_default_graph()
已加入。
如果断电,需要断点处续训
解决方法:加入下面通用的代码,保证下次从上次训练结束处开始训练。
#断点续训
ckpt=tf.train.get_checkpoint_state(MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess,ckpt.model_checkpoint_path)
参考文献:
- 中国MOOC《tensorflow学习笔记》By 北京大学 曹健老师
- ValueError: Variable rnn/basic_rnn_cell/kernel already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope?