- 【AI】在Windows10下部署本地LLM RAG服务
每日出拳老爷子
ai人工智能ailangchainGPT
【背景】上一篇介绍了如何用Ubuntu命令行部署ollamaLLM+RAG服务。部署后等于拥有了基于内网的AISaas服务,其它内网用户可以通过默认的网址访问Playground对AI进行问答。【概念】RAG:通过词向量技术,将文件内容向量化后,通过语言模型以自然交流的形式得到文本相关的内容。可以形容为与文件库或知识库对话的系统。RAG的后台向量库并不需要对LLM产生影响,LLM是人与向量库(知识
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- fastText 情感分类
dreampai
情感分类任务就是看一段文本,然后分辨这个人是否喜欢他们在讨论的这个东西。情感分类一个最大的挑战就是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小的标记的训练集,你也能构建一个不错的情感分类器image.pngimage.png假设有一个句子:“这个衣服质量不错”通过分词、去除停用词等预处理操作,得到“衣服/质量/不错”获取“衣服”、“质量”、“不错”的对应词向量(可以通过TF-IDF
- NLP中的词向量及其应用
喜欢打酱油的老鸟
NLP词向量
https://www.toutiao.com/a6643219722961682947/2019-01-0611:25:24词向量基本上是一种单词表示形式,它将人类对语言的理解与机器的理解连接起来。词向量是文本在n维空间中的分布式表示。这些是解决大多数NLP问题所必需的。领域适应是一种技术,它允许机器学习和转移学习模型来映射小生境数据集,这些数据集都是用同一种语言编写的,但在语言上仍然不同。例如
- 深度学习100问28:什么是RNNLM(RNN语言模型)
不断持续学习ing
人工智能自然语言处理机器学习
嘿,你知道RNNLM是啥不?简单来说,它就像是一个语言小魔法师。想象一下,RNNLM是一个特别会猜词的小伙伴。它的任务呢,就是预测一个句子出现的概率,或者当你给它一些上文的时候,它能猜出下一个词会是啥。它是怎么做到的呢?它有一个像魔法盒子一样的结构,由输入层、隐藏层和输出层组成。输入层就像是接收魔法信号的入口,把词的表示,比如一些特别的编码或者词向量给接收进来。隐藏层可神奇啦,它就像有个记忆小口袋
- 深度学习100问10-什么是CBOW模型
不断持续学习ing
人工智能自然语言处理机器学习深度学习
CBOW(ContinuousBagofWords)模型是一种用于训练词向量的方法。想象一下,CBOW就像是一个猜词游戏。它从一个文本中选取一个词作为目标词,然后把这个目标词周围的几个词当成线索。CBOW的任务就是根据这些线索来猜出目标词是什么。为了完成这个任务,CBOW会先把这些线索词(周围的词)都转换成向量,然后把这些向量加起来或者求平均,得到一个综合的向量表示。接着,CBOW会用这个综合向量
- 单词向量化
西域记
1.使用CountVectorizer将文本转化为向量fromsklearn.feature_extraction.textimportCountVectorizervect=CountVectorizer()dialog=['Ihaveaddictedintocybersecurityforyears']vect.fit(dialog)print(vect.vocabulary_)输出结果是一个
- 使用Python实现文本向量化(一)——腾讯词向量
Shy960418
Python使用技巧深度学习python人工智能
Docs向量化(Embedding)Embedding也是文本语义含义的信息密集表示,每个嵌入都是一个浮点数向量,使得向量空间中两个嵌入之间的距离与原始格式中两个输入之间的语义相似性相关联。例如,如果两个文本相似,则它们的向量表示也应该相似,这一组向量空间内的数组表示描述了文本之间的细微特征差异。简单来说,Embedding帮助计算机来理解如人类信息所代表的“含义”,Embedding可以用来获取
- Transformer、BERT和GPT 自然语言处理领域的重要模型
Jiang_Immortals
人工智能自然语言处理transformerbert
Transformer、BERT和GPT都是自然语言处理领域的重要模型,它们之间有一些区别和联系。区别:架构:Transformer是一种基于自注意力机制的神经网络架构,用于编码输入序列和解码输出序列。BERT(BidirectionalEncoderRepresentationsfromTransformers)是基于Transformer架构的双向编码模型,用于学习上下文无关的词向量表示。GP
- 计算机设计大赛 深度学习的智能中文对话问答机器人
iuerfee
python
文章目录0简介1项目架构2项目的主要过程2.1数据清洗、预处理2.2分桶2.3训练3项目的整体结构4重要的API4.1LSTMcells部分:4.2损失函数:4.3搭建seq2seq框架:4.4测试部分:4.5评价NLP测试效果:4.6梯度截断,防止梯度爆炸4.7模型保存5重点和难点5.1函数5.2变量6相关参数7桶机制7.1处理数据集7.2词向量处理seq2seq7.3处理问答及答案权重7.4训
- SPSSAU【文本分析】|文本聚类
spssau
支持向量机机器学习人工智能
SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以‘行’为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。按词聚类分析按词聚类分析操作如下图:默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其
- 自然语言处理N天-AllenNLP学习(实现简单的词性标注)
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg1.前言在了解了Transformer之后,这个模型是否可用呢?现在遇到的问题是,目前试了几个模型(LSTM、GRU、Transformer),但是还没有放入实践中,具体应该怎么操作?有一篇帖子总结了一下学习处理NLP问题中间的坑。NLP数据预处理要比CV的麻烦很多。去除停用词,建立词典,加载各种预训练词向量,Sentence->Wo
- Task5 基于深度学习的文本分类2
listentorain_W
Task5基于深度学习的文本分类2在上一章节,我们通过FastText快速实现了基于深度学习的文本分类模型,但是这个模型并不是最优的。在本章我们将继续深入。基于深度学习的文本分类本章将继续学习基于深度学习的文本分类。学习目标学习Word2Vec的使用和基础原理学习使用TextCNN、TextRNN进行文本表示学习使用HAN网络结构完成文本分类文本表示方法Part3词向量本节通过word2vec学习
- 使用word2vec+tensorflow自然语言处理NLP
取名真难.
机器学习自然语言处理word2vectensorflow机器学习深度学习神经网络
目录介绍:搭建上下文或预测目标词来学习词向量建模1:建模2:预测:介绍:Word2Vec是一种用于将文本转换为向量表示的技术。它是由谷歌团队于2013年提出的一种神经网络模型。Word2Vec可以将单词表示为高维空间中的向量,使得具有相似含义的单词在向量空间中距离较近。这种向量表示可以用于各种自然语言处理任务,如语义相似度计算、文本分类和命名实体识别等。Word2Vec的核心思想是通过预测上下文或
- 大模型位置编码、长度外推问题、ALiBi知识
lichunericli
LLM人工智能语言模型
1什么是位置编码?位置编码是一种用于在序列数据中为每个位置添加位置信息的技术。在自然语言处理中,位置编码通常用于处理文本序列。由于传统的神经网络无法直接捕捉输入序列中的位置信息,位置编码的引入可以帮助模型更好地理解和处理序列数据。在Transformer模型中,位置编码通过为输入序列中的每个位置分配一个固定的向量来实现。这些向量会与输入序列中的词向量相加,以融合位置信息。位置编码的设计目的是使模型
- word2vec工具学习笔记
适说心语
今天是第一次听说这个工具,本来是为了解决非目标客户的问题,但是要从头了解这个内容,所以边找资料边记录一下!一、简介Word2vec,是为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示
- Keras使用使用动态LSTM/RNN
Sailist
TensorFlow
padding:defgenerate(mtp=100,batch=50):#最长时间步,词向量长度为200,batch_size=50origin_input=np.random.random_sample([batch,np.random.randint(mtp/2,mtp),200])#时间长随机从mtp/2-mtp选择returnpad_sequences(origin_input,mtp
- 【简单文本相似度分析】( LCS | Trie | DP | 词频统计 | hash | 单词分割 )
XNB's Not a Beginner
算法哈希算法算法c++数据结构链表hashtable
两个文本的相似度的指标有很多,常见的有词袋分析,词向量余弦,LCS(子串,子序列),Jaccard相似度分析(单词集合的对称差和最小全集比值),编辑距离等等我在自己的程序里只定义两个指标:1单词重复度2最长公共子序列长度首先用c++builtin的字符输入流对象istringstream做单词分割然后用我自己写的patriacatrie树当作词袋,把词量小的string做映射集合(类似重链合并),
- Python与自然语言处理库Gensim实战
心梓知识
python自然语言处理easyui
一、Gensim简介Gensim是一款Python自然语言处理库。它能够自动化训练出一个文本语料库,然后用该语料库来训练出一个词向量模型。在语料库中,每个语料库都是由一个个文档组成,每个文档则是由若干个单词组成。Gensim相对于其他Python自然语言处理库的优点在于它的速度和内存占用率较低。同时它还提供了许多文本处理的功能,比如文档相似度计算和主题建模等。二、安装Gensim在安装Gensim
- 【NLP 自然语言处理(一)---词向量】
y_dd
深度学习自然语言处理人工智能
文章目录什么是NLP自然语言处理发展历程自然语言处理模型模型能识别单词的方法词向量分词一个向量vector表示一个词词向量的表示-one-hot多维词嵌入wordembeding词向量的训练方法CBOWSkip-gram词嵌入的理论依据一个vector(向量)表示短语或者文章vectorspaceModelbag-of-wordvectorspaceModel+bag-of-word实现信息搜索改
- NLP自然语言处理实战(三):词频背后的语义--5.距离和相似度&反馈及改进
Nobitaxi
NLP自然语言处理实战学习自然语言处理机器学习人工智能
目录1.距离和相似度2.反馈及改进线性判别分析1.距离和相似度我们可以使用相似度评分(或距离),根据两篇文档的表达向量间的相似度(或距离)来判断文档间有多相似。LSA能够保持较大的距离,但它并不能总保持较小的距离(文档之间关系的精细结构)。LSA底层的SVD算法的重点是使新主题向量空间中所有文档之间的方差最大化。特征向量(词向量、主题向量、文档上下文向量等)之间的距离驱动着NLP流水线或任何机器学
- 人工智能|深度学习——使用多层级注意力机制和keras实现问题分类
博士僧小星
人工智能#深度学习【算法】人工智能深度学习keras多层注意力问题分类
代码下载使用多层级注意力机制和keras实现问题分类资源-CSDN文库1准备工作1.1什么是词向量?”词向量”(词嵌入)是将一类将词的语义映射到向量空间中去的自然语言处理技术。即将一个词用特定的向量来表示,向量之间的距离(例如,任意两个向量之间的L2范式距离或更常用的余弦距离)一定程度上表征了的词之间的语义关系。由这些向量形成的几何空间被称为一个嵌入空间。传统的独热表示(one-hotrepres
- 词共现矩阵表示词向量和点互信息
浅白Coder
自然语言处理自然语言处理深度学习人工智能
1.文档中某些字/词出现的频次往往能反应该字在文档中的重要程度,也从侧面反应了文档的主题,比如一个新闻,如果出现很多类似“足球”“篮球”词汇的描述,我们可以大概率推断这是一个关于体育的新闻。但是有些高频词会影响我们对文档的分析,比如“我”“你”“。、,!”这种词汇在文档中的数目非常多,但对于我们分析文档,没有什么益处,毕竟所有的文档,基本都包括这些内容。2.NLP中对于给定一个句子,其中是一个单词
- NLP_词的向量表示Word2Vec 和 Embedding
you_are_my_sunshine*
NLP自然语言处理word2vecembedding
文章目录词向量Word2Vec:CBOW模型和Skip-Gram模型通过nn.Embedding来实现词嵌入Word2Vec小结词向量下面这张图就形象地呈现了词向量的内涵:把词转化为向量,从而捕捉词与词之间的语义和句法关系,使得具有相似含义或相关性的词语在向量空间中距离较近。我们把语料库中的词和某些上下文信息,都“嵌入”了向量表示中。将词映射到向量空间时,会将这个词和它周围的一些词语一起学习,这就
- word2vec
e237262360d2
将词表征为实数值向量的高效工具,采用的模型有CBOW(Continuesbag-of-words连续词袋模型)和Skip-Gram两种。word2vec通过训练,可以把对文本内容的处理简化为K维向量空间中的向量运算词向量:把一个词表示成一个向量One-hotRepresentation维度是词典的大小DistributedRepresentation维度以50,100比较常见CBOW:用上下文预测
- 【PyTorch][chapter 14][李宏毅深度学习][Word Embedding]
明朝百晓生
深度学习pytorchembedding
前言:这是用于自然语言处理中数据降维的一种方案。我们希望用一个向量来表示每一个单词.有不同的方案目录:one-hotEncodingword-class词的上下文表示count-basedperdition-basedCBOWSkip-GramwordEmbedding词向量相似度一one-hotEncoding假设英文有10万个单词,那每个单词用1个10万维的one-hot编码表示。其中只有1个
- Word2Vec ——gensim实战教程
王同学死磕技术
最近斯坦福的CS224N开课了,看了下课程介绍,去年google发表的Transformer以及最近特别火的ContextualWordEmbeddings都会在今年的课程中进行介绍。NLP领域确实是一个知识迭代特别快速的领域,每年都有新的知识冒出来。所以身处NLP领域的同学们要时刻保持住学习的状态啊。笔者又重新在B站上看了这门课程的第一二节课。这里是课程链接。前两节课的主要内容基本上围绕着词向量
- python使用正则匹配判断字符串中含有某些特定子串及正则表达式详解
浮生若梦777
pythonpython开发语言
目录一、判断字符串中是否含有字串二、正则表达式(一)基本内容1.正则表达式修饰符——可选标志2.正则表达式模式(二)常见表达式函数一、判断字符串中是否含有字串in,notin判断字符串中是否含有某些关键词,方法比较多例如分词后对词向量和关键词进行==匹配,但这种方法以来分词的准确性,不太推荐;其次使用成员运算符in,notin可以较好的判断字符串中是否包含某关键词,即特定字串a='这个暑假我读了红
- NLP_统计语言模型的发展历程
you_are_my_sunshine*
NLP自然语言处理语言模型人工智能
文章目录统计语言模型发展的里程碑:上半部分是语言模型技术的进展;下半部分则是词向量(词的表示学习)技术的发展。其中,词向量表示的学习为语言模型提供了更高质量的输入信息(词向量表示)1948年,著名的N-Gram模型诞生,思路是基于前N-1个项目来预测序列中的第N个项目,所谓的“项目”,就是词或者短语。1954年的Bag-of-Words模型是一种简单且常用的文本表示方法,它将文本表示为一个单词的集
- TensorFlow2实战-系列教程11:RNN文本分类3
机器学习杨卓越
TensorFlow深度学习tensorflowrnnnlp文本分类
TensorFlow2实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在JupyterNotebook中进行本篇文章配套的代码资源已经上传6、构建训练数据所有的输入样本必须都是相同shape(文本长度,词向量维度等)tf.data.Dataset.from_tensor_slices(tensor):将tensor沿其第一个维度切片,返回一个含有N个样本的数据集,这样做的问题就
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt