- 【精华推荐】AI大模型学习必逛的十大顶级网站
大模型入门学习
人工智能学习大模型入门llama大模型教程大模型学习大模型
随着人工智能技术的快速发展,AI大模型(如GPT-3、BERT等)在自然语言处理、计算机视觉等领域取得了显著的成果。对于希望深入学习AI大模型的开发者和研究者来说,找到合适的学习资源至关重要。本文将为大家推荐十大必备网站,帮助你更好地理解和应用AI大模型。1.CourseraCoursera是一个在线学习平台,提供各类AI和机器学习课程,包括斯坦福大学的机器学习课程和深度学习专项课程。通过视频讲解
- 如何结合NLP(自然语言处理)技术提升OCR系统的语义理解和上下文感知能力?
金智维科技官方
自然语言处理ocr人工智能
光学字符识别(OCR)技术能够快速从文档、图像中提取文本信息,目前已经广泛应用于金融、教育、医疗、物流等领域。然而,传统OCR技术的功能主要集中在字符提取和简单的结构化输出上,难以处理复杂场景中涉及的语义理解与上下文感知问题。而通过将自然语言处理(NLP)技术与OCR相结合,可以极大提升系统对文本的语义理解能力,为多场景应用赋予更高的智能化水平。虽然OCR在文本识别的准确性和速度上不断提升,但面对
- 基于Python 和 DeepSeek API 实现文本分类
修破立生
大模型python人工智能
在自然语言处理(NLP)领域,文本分类是一项非常重要的任务,它可以帮助我们将大量的文本数据自动归类到不同的类别中。传统的文本分类方法有很多,而近年来,利用大模型进行文本分类逐渐成为一种流行且高效的方式。本文将介绍如何使用Python编写代码,结合DeepSeekAPI实现文本分类的功能,并探讨使用大模型方法进行文本分类与其他方法的区别。1代码概述我们的代码主要实现了以下几个功能:创建一个DeepS
- Milvus 数据批量导入实战:Python代码解析
修破立生
Milvusmilvuspython人工智能
1引言在处理大规模数据的存储和检索时,向量数据库逐渐成为一种热门的解决方案。Milvus作为一款高性能的向量数据库,在人工智能、机器学习等领域有着广泛的应用。本文将介绍如何使用Python代码将数据批量导入到Milvus数据库中,通过实际的代码示例来帮助大家理解导入过程和相关的技术要点。2代码功能概述我们的代码主要实现了从本地文件读取数据,并将其批量导入到Milvus数据库的功能。代码涉及到命令行
- 基于RK3588的AI摄像头应用解决方案
浙江启扬智能科技有限公司
linuxARM嵌入式开发嵌入式硬件
随着人工智能(AI)技术的快速发展,越来越多的视频监控系统开始直接在摄像头上部署AI分析,视频监控从早期的图像记录发展到如今具备AI运算能力和算法,可进行目标识别、行为分析以及事件反馈,实现从被动记录到主动预警的转变。目前有三种算力部署方式:AI分析部署在云端、AI分析部署在边缘、AI分析部署在摄像头,也就是我们常说的云,边,端。但越来越多的摄像头本身就集成了AI分析能力,这一趋势的出现存在多方面
- AI江湖风云:GPT-4.5与Grok-3的巅峰对决
广拓科技
人工智能
在科技飞速发展的今天,人工智能领域的竞争可谓是一场没有硝烟的战争。各大科技巨头和新兴企业纷纷投入大量资源,力求在这个充满无限可能的领域中抢占先机。就在前不久,AI界发生了一件大事,OpenAI的明星产品GPT-4.5竟然被马斯克旗下xAI公司的Grok-3反超,这个消息犹如一颗重磅炸弹,瞬间在科技圈掀起了惊涛骇浪。大家纷纷猜测,这背后究竟隐藏着怎样的故事?Grok-3究竟凭什么能够后来居上,实现对
- OLMo 7B:推动自然语言处理领域的技术革新
单皎娥
OLMo7B:推动自然语言处理领域的技术革新OLMo-7B项目地址:https://gitcode.com/hf_mirrors/ai-gitcode/OLMo-7B引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域取得了显著的进步。然而,在实际应用中,NLP技术仍然面临着诸多挑战,如语境理解、信息抽取、情感分析等。为了解决这些问题,艾伦人工智能研究所(AI2)推出了OLMo系列模型,其中
- 探索未来文本的无限可能:OLMo 开源语言模型深度解析
钟洁祺
探索未来文本的无限可能:OLMo开源语言模型深度解析OLMoModeling,training,eval,andinferencecodeforOLMo项目地址:https://gitcode.com/gh_mirrors/ol/OLMo在人工智能的浩瀚领域中,一个崭新的星体正在升起——OLMo:OpenLanguageModel。由AI2(艾伦人工智能研究所)的科学家们精心打造,OLMo不仅仅是
- 手写数字识别项目:从原理到实践
北屿升:
微信新浪微博facebook微信公众平台百度
在当今数字化时代,手写数字识别作为模式识别和人工智能领域的重要应用,有着广泛的用途,如邮政信封上的邮编识别、银行支票上的数字处理等。本文将详细介绍手写数字识别项目的相关内容,包括原理、数据集、实现步骤和应用前景。一、手写数字识别原理手写数字识别主要依赖于模式识别和机器学习技术。其基本原理是将手写数字的图像转换为计算机能够处理的数字信号,然后通过特征提取和分类算法来判断该数字的具体值。常用的特征提取
- Dolma:开源大规模语言模型预训练数据集与工具包
2401_87458718
语言模型人工智能自然语言处理
Dolma:开源大规模语言模型预训练数据集与工具包Dolma是由Allen人工智能研究所(AI2)开发的一个开源项目,旨在为大规模语言模型的预训练提供高质量的数据集和强大的数据处理工具。Dolma包含两个主要组成部分:Dolma数据集和Dolma工具包。Dolma数据集Dolma数据集是一个包含3万亿个token的开放数据集,涵盖了多样化的内容来源,包括网页内容、学术出版物、代码、书籍和百科全书材
- BP神经网络计算过程:从数学原理到实践优化
Acd_713
BP神经网络神经网络人工智能深度学习
引言:神经网络的时代意义与BP算法地位在深度学习重构人工智能边界的今天(Goodfellowetal.,2016),误差反向传播(Backpropagation,BP)算法作为神经网络训练的基石,其数学优雅性和工程实用性完美统一。本文将深入剖析BP神经网络的计算本质,揭示其如何在非线性空间中构建认知通道。第1章神经网络拓扑结构的数学建模1.1生物神经元到M-P模型的抽象跃迁McCulloch-Pi
- 成为LLM大师的必读书籍:这几本大模型书籍,详细到让你一篇文章就收藏足够
AGI大模型老王
产品经理大模型教程学习大模型人工智能LLM大模型书籍
以下是几本关于大模型和人工智能领域的经典书籍,它们各自具有独特的特点和适用人群:《深度学习》(DeepLearning)作者:伊恩·古德费洛(IanGoodfellow)、约书亚·本吉奥(YoshuaBengio)、亚伦·库维尔(AaronCourville)简介:《深度学习》是深度学习领域的经典之作,全面介绍了深度学习的基础知识、主要模型及其应用。书中详细讲解了神经网络、卷积神经网络、循环神经网
- 深度学习模型未来可能会在这些领域取得突破性进展
xinxiyinhe
人工智能深度学习人工智能深度学习模型深度学习
深度学习模型作为人工智能的核心技术之一,未来有望在多个领域取得突破性进展。以下是一些可能的方向:1.通用人工智能(AGI)目标:开发具有通用智能的模型,能够像人类一样处理多种任务。潜在突破:更强的推理和抽象能力,解决复杂问题。结合多模态数据(文本、图像、声音等)实现更全面的理解。自我学习和适应能力,减少对大量标注数据的依赖。2.医疗与生命科学目标:提升疾病诊断、药物研发和个性化治疗的水平。潜在突破
- AI学习预备知识-数据操作(3)广播机制
羞涩的小吉他
人工智能学习
AI学习预备知识-数据操作(3)广播机制提示:本系列持续更新中文章目录AI学习预备知识-数据操作(3)广播机制前言广播机制总结前言随着开始人工智能的学习越来越多,那么再学习过程中,我们应该有一定的基础知识储备,本系列为基础知识储备介绍,在以往系列中我们提到了相同形状的张量按元素操作,那不同形状的张量操作就涉及到本文主要讲解AI学习储备知识–广播机制。广播机制提示:默认使用python,数据操作使用
- AI与.NET技术实操系列
胖头鱼不吃鱼-
人工智能.net
引言在当今技术飞速发展的时代,人工智能(ArtificialIntelligence,AI)已成为推动创新和变革的核心力量。从智能助手到自动化决策系统,AI的应用无处不在,深刻影响着我们的生活和工作方式。对于软件开发者而言,掌握AI技术不仅意味着紧跟潮流,更是在竞争激烈的市场中保持优势的关键。作为微软的旗舰开发平台,.NET为开发者提供了丰富的工具和库,使他们能够轻松地将AI功能集成到应用程序中。
- Python从0到100(十八):面向对象编程应用
是Dream呀
python开发语言
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- Word2Vec向量化语句的计算原理
堕落年代
AIword2vec人工智能机器学习
一、Word2Vec的核心理念Word2Vec由Google团队于2013年提出,是一种通过无监督学习生成词向量的模型。其核心思想是“相似的词拥有相似的上下文”,通过上下文关系捕捉词汇的语义和语法特征。生成的向量具有低维(通常100-300维)、连续且稠密的特点,解决了传统One-Hot编码的高维稀疏和语义缺失问题。二、向量化的核心步骤(以Skip-Gram模型为例)示例句子假设句子为:“Theq
- 机器学习笔记
有涯小学生
赵卫东机器学习笔记机器学习人工智能
1概述1.1简介机器学习(MachineLearning)是计算机科学的子领域,也是人工智能的一个分支和实现方式。“对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么就称这个计算机程序在从经验E学习。”(汤姆·米切尔(TomMitchell),1997,MachineLearning)1.2机器学习、人工智能、数据挖掘从本质上看,数据科学的目标是通过处理各
- 大模型技术在网络安全领域的应用与发展
蓝色的香菇
web安全安全大模型
一、概述大模型技术,尤其是深度学习和自然语言处理领域的大型预训练模型,近年来在网络安全领域得到了广泛应用。这些模型通过其强大的数据处理能力和泛化能力,为网络安全带来了新的机遇和挑战。本文将对大模型技术在网络安全领域的应用进行全面分析,识别关键应用进展,并探讨其对网络安全领域的潜在影响。二、大模型技术在网络安全领域的应用安全运营网络日志分析:大模型可以通过分析大量网络日志,自动识别异常行为和潜在威胁
- 文本标注工具(brat)
deepdata_cn
文本标注文本标注
文本标注是自然语言处理领域中的一项基础且关键的任务,它主要是指专业的标注人员或借助特定的标注工具,按照一定的规则和标准,对文本内容进行标记和注释,从而赋予文本特定的语义信息和结构信息。具体来说,标注人员会根据任务需求,在文本中识别并标记出各种元素,比如将文本中的人名、地名、组织机构名等标注为不同的实体类型,确定文本中不同实体之间存在的关系,像因果关系、所属关系等,还会对文本中的特定事件进行标注,记
- 职坐标AIGC课程实战项目深度解析
职坐标在线
其他
内容概要在人工智能技术加速渗透各行业的背景下,职坐标IT培训体系中的AIGC课程以实战项目经验为核心,构建了从基础理论到产业落地的立体化培养框架。课程聚焦人工智能生成内容(AIGC)的核心技术链,涵盖自然语言处理、生成模型架构及多模态数据融合等模块,通过电商智能客服系统与新媒体文案生成工具两类典型场景的深度实践,强化学员对模型训练、参数调优及商业落地的综合能力。为适配行业需求,课程设计采用“三阶递
- 从入门到精通:清华DeepSeek全六版使用手册,AI学习的超强攻略指南
2501_90771553
pdf
从入门到精通:清华DeepSeek全六版使用手册,AI学习超强攻略指南在人工智能飞速发展、应用日益广泛的今天,越来越多的人渴望踏入AI学习的领域,探索其中的奥秘。然而,AI知识体系庞大复杂,从基础概念到前沿技术,想要快速掌握并非易事。此时,拥有一套系统、全面且权威的学习指南就显得尤为重要。今天,我们就为大家带来清华DeepSeek全六版使用手册,堪称AI学习的超强攻略指南,助力你从入门小白成长为A
- 智能驾驶:驶向未来的变革之路
测试者家园
人工智能质量效能智能驾驶人工智能质量效能机器人智能驾驶智能汽车无人汽车无人驾驶
在科技迅猛发展的今天,智能驾驶作为人工智能与交通运输深度融合的产物,正引领着汽车行业的革命性变革。从最初的驾驶辅助系统到如今的高度自动驾驶,智能驾驶技术的演进不仅改变了人们的出行方式,也对社会经济、法律法规等多个层面产生了深远影响。一、智能驾驶的技术演进与现状1.技术等级划分根据国际自动机工程师学会(SAE)的定义,自动驾驶技术被分为L0至L5六个等级:L0级:无自动化,完全由人类驾驶员控制。L1
- 深度学习揭秘:神经网络如何模拟人脑
shelly聊AI
AI核心技术深度学习神经网络人工智能
大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。AI工具集1:大厂AI工具【共23款】,一次性奉上,今天是百度和阿里AI工具集2:大厂AI工具【共12款】,一次性奉上,看看腾讯和字节的宝贝人工智能&AIGC术语100条Shelly聊AI-重磅发布一
- DeepSeek vs Grok vs ChatGPT:大模型三强争霸,谁将引领AI未来?
带上一无所知的我
chatgpt人工智能DeepSeek
DeepSeekvs.Grokvs.ChatGPT:大模型三强争霸,谁将引领AI未来?在人工智能领域,生成式模型的竞争已进入白热化阶段。DeepSeek、Grok和ChatGPT作为三大代表性工具,凭借独特的技术路径和应用优势,正在重塑行业格局。本文将从技术架构、核心功能、应用场景、性能成本等多维度展开深度对比,揭示其背后的竞争逻辑与未来趋势。一、技术架构:从知识图谱到通用智能的演进1.DeepS
- 呼叫智能体:AI时代下的智能交互革命
MARS_AI_
人工智能自然语言处理信息与通信nlp
在人工智能技术高速发展的今天,呼叫智能体(CallAgent)正成为企业服务升级的核心引擎。它不仅是传统呼叫中心的智能化延伸,更是融合语音克隆、多语种交互、智能体编排等前沿技术的综合解决方案。本文将从技术原理、行业挑战、应用场景三个维度,解析这一突破性技术。一、呼叫智能体的核心技术栈声音克隆与TTS进化通过深度学习模型(如VITS、FastSpeech2),系统可克隆特定人声音色,结合大语言模型生
- AI 外呼产品架构解读:让智能外呼更精准高效
MARS_AI_
人工智能架构自然语言处理信息与通信
在人工智能(AI)技术迅猛发展的今天,AI外呼系统已成为呼叫中心领域的新宠。本文将剖析AI外呼产品的基本架构,帮助读者理解其背后的技术逻辑和应用价值。一、支撑能力层:AI外呼的基石AI外呼系统的底层架构,即支撑能力层,为整个系统提供了坚实的技术基础。这一层主要包括以下三个核心组成部分:1.AI基础能力AI基础能力涵盖了语音识别(ASR)、自然语言处理(NLP)和语音合成(TTS)等技术。这些技术使
- 自然语言模型(NLP)介绍
Liudef06
StableDiffusion自然语言处理人工智能
一、自然语言模型概述自然语言模型(NLP)通过模拟人类语言理解和生成能力,已成为人工智能领域的核心技术。近年来,以DeepSeek、GPT-4、Claude等为代表的模型在技术突破和应用场景上展现出显著优势。例如,DeepSeek通过强化学习提升推理能力,其混合专家架构(MoE)显著优化了计算效率。二、核心技术解析1.DeepSeek模型架构混合专家模型(MoE):DeepSeek-V3采用Mo
- 人工智能之数学基础:矩阵的秩
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能矩阵机器学习深度学习线性代数秩
本文重点矩阵的秩,作为矩阵理论中的一个核心概念,是连接矩阵性质与应用的重要桥梁。本文我们将学习矩阵秩的概念,通过矩阵的秩可以判断矩阵是否可逆等等,所以矩阵的秩是非常重要的一个概念。矩阵秩的概念秩定义为矩阵A的线性独立的行(或列)的最大数目。也就是说,如果把矩阵看成由行向量或列向量组成,那么矩阵的秩就是这些向量中极大线性无关组所含向量的个数。矩阵的秩定义为矩阵线性无关的行向量或者列向量的最大数量,表
- 清华出品DeepSeek六版手册,携全套AI资料,带你闯入AI的奇妙世界
2501_90771553
pdf
清华出品DeepSeek六版手册,携全套AI资料,带你闯入AI的奇妙世界在科技飞速发展的时代,人工智能(AI)已然成为引领变革的核心力量。无论是对AI充满好奇的初学者,还是在该领域深耕的专业人士,都在不断探寻着更优质、更全面的学习资源。现在,一份来自清华大学的厚礼——DeepSeek六版手册,带着全套AI资料震撼登场,将引领你走进AI的奇妙世界!DeepSeek系列手册,凭借清华大学深厚的学术底蕴
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置