RNN_lstm 循环神经网络 - 回归任务

Github:https://github.com/yjfiejd/Tensorflow_leaning/blob/master/tensorflow_20.3_RNN_lstm_regression.py


# -*- coding:utf8 -*-
# @TIME : 2018/4/30 下午2:35
# @Author : Allen
# @File : tensorflow_20.3_RNN_lstm_regression.py

#使用RNN进行回归训练,会用到自己创建对sin曲线,预测一条cos曲线,
#【1】设置RNN各种参数
#import state as state
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

BATCH_START = 0 #建立batch data时候对index
TIME_STEPS = 20 #backpropagation through time 的 time_steps
BATCH_SIZE = 50
INPUT_SIZE = 1 #sim 数据输入size
OUTPUT_SIZE = 1 #cos数据输出size
CELL_SIZE = 10 #RNN的hidden unit size
LR = 0.006

#【2】 生成数据的get_batch function:
def get_batch():
    global BATCH_START, TIME_STEPS
    # xs shape (50batch, 20steps)
    xs = np.arange(BATCH_START, BATCH_START + TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (10*np.pi)
    seq = np.sin(xs)
    res = np.cos(xs)
    BATCH_START += TIME_STEPS
    # returned seq, res and xs; shape(batch, step, input)
    return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs]

#【3】定义LSTMRNN的主体结构
#使用一个 class 来定义这次的 LSTMRNN 会更加方便. 第一步定义 class 中的 __init__ 传入各种参数:
class LSTMRNN(object):
    def __init__(self, n_steps, input_size, output_size, cell_size, batch_size):
        self.n_steps = n_steps
        self.input_size = input_size
        self.output_size = output_size
        self.cell_size = cell_size
        self.batch_size = batch_size
        with tf.name_scope('inputs'):
            self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')
            self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys')
        with tf.variable_scope('in_hidden'):
            self.add_input_layer()
        with tf.variable_scope('LSTM_cell'):
            self.add_cell()
        with tf.variable_scope('out_hidden'):
            self.add_output_layer()
        with tf.name_scope('cost'):
            self.compute_cost()
        with tf.name_scope('train'):
            self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)


    #设置add_input_layer()函数,添加input_layer()
    def add_input_layer(self,):
        l_in_x = tf.reshape(self.xs, [-1, self.input_size], name = '2_2D') #(batch*n_step, in_size)
        #Ws (in_size, cell_size)
        Ws_in = self._weight_variable([self.input_size, self.cell_size])
        #bs (cell_size)
        bs_in = self._bias_variable([self.cell_size,])
        #l_in_y = (batch * n_steps, cell_size)
        with tf.name_scope('Wx_plus_b'):
            l_in_y = tf.matmul(l_in_x, Ws_in) +bs_in
        #reshape l_in_y ==> (batch, n_steps, cell_size)
        self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D')

    #设置add_cell功能,添加cell, 注意此处的self.cell_init_state, 因为我们在 training 的时候, 这个地方要特别说明.
    def add_cell(self):
        lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias = 1.0, state_is_tuple = True)
        with tf.name_scope('initial_state'):
            self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype= tf.float32)
        self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)

    #设置add_output_layer功能, 添加output_layer:
    def add_output_layer(self):
        # shape= (batch * steps, cell_size)
        l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name= '2_2D')
        Ws_out = self._weight_variable([self.cell_size, self.output_size])
        bs_out = self._bias_variable([self.output_size, ])
        # shape = (batch * steps, output_size)
        with tf.name_scope('Wx_plus_b'):
            self.pred = tf.matmul(l_out_x, Ws_out) + bs_out

    #添加RNN 剩余部分
    def compute_cost(self):
        losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
            [tf.reshape(self.pred, [-1], name='reshape_pred')],
            [tf.reshape(self.ys, [-1], name= 'reshape_target')],
            [tf.ones([self.batch_size * self.n_steps], dtype = tf.float32)],
            average_across_timesteps = True,
            softmax_loss_function = self.ms_error,
            name= 'losses'
        )
        with tf.name_scope('average_cost'):
            self.cost = tf.div(
                tf.reduce_sum(losses, name='losses_sum'),
                tf.cast(self.batch_size, tf.float32),
                name = 'average_cost')
            tf.summary.scalar('cost', self.cost)

    @staticmethod
    def ms_error(labels, logits):
        return tf.square(tf.subtract(labels, logits))
    #没有加@staticmethod时候报错, TypeError: ms_error() got multiple values for argument 'labels'
    #解决办法:https://stackoverflow.com/questions/18950054/class-method-generates-typeerror-got-multiple-values-for-keyword-argument

    def _weight_variable(self, shape, name='weights'):
        initializer = tf.random_normal_initializer(mean=0., stddev=1., )
        return tf.get_variable(shape=shape, initializer=initializer, name=name)

    def _bias_variable(self, shape, name='biases'):
        initializer = tf.constant_initializer(0.1)
        return tf.get_variable(name=name, shape = shape, initializer=initializer)


#【4】 训练LSTMRNN
if __name__ == '__main__':
    model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
    sess = tf.Session()
    merged = tf.summary.merge_all()
    writer = tf.summary.FileWriter("logs", sess.graph)

    if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
        init = tf.initialize_all_variables()
    else:
        init = tf.global_variables_initializer()
    sess.run(init)
    # relocate to the local dir and run this line to view it on Chrome (http://0.0.0.0:6006/):
    # $ tensorboard --logdir='logs'

    plt.ion()
    plt.show()
    for i in range(200):
        seq, res, xs = get_batch()
        if i == 0:
            feed_dict = {
                    model.xs: seq,
                    model.ys: res,
                    # create initial state
            }
        else:
            feed_dict = {
                model.xs: seq,
                model.ys: res,
                model.cell_init_state: state    # use last state as the initial state for this run
            }

        _, cost, state, pred = sess.run(
            [model.train_op, model.cost, model.cell_final_state, model.pred],
            feed_dict=feed_dict)

        # plotting
        plt.plot(xs[0, :], res[0].flatten(), 'r', xs[0, :], pred.flatten()[:TIME_STEPS], 'b--')
        plt.ylim((-1.2, 1.2))
        plt.draw()
        plt.pause(0.3)

        if i % 20 == 0:
            print('cost: ', round(cost, 4))
            result = sess.run(merged, feed_dict)
            writer.add_summary(result, i)
 
  


RNN_lstm 循环神经网络 - 回归任务_第1张图片
到后面,蓝色是我们的学习曲线,它越来越接近红色sin函数曲线了

你可能感兴趣的:(机器学习实战代码实现)