目录
- 最小角回归法
- 一、举例
- 二、最小角回归法优缺点
- 2.1 优点
- 2.2 缺点
- 三、小结
更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html
最小角回归法
最小角回归相当于前向选择法和前向梯度法的一个折中算法,简化了前项梯度法因\(\epsilon\)的迭代过程,并在一定程度的保证了前向梯度法的精准度。
通常用最小角回归法解决线性模型的回归系数。对于一个有\(m\)个样本,每个样本有\(n\)个特征的训练集而言,假设可以拟合一个线性模型\(Y=\omega^TX\),其中\(Y\)是\(m*1\)的向量,\(X\)是\(m*n\)的矩阵,\(\omega\)是\(n*1\)的向量。即可通过最小角回归法求得最小化该模型的参数\(\omega\)。
首先把矩阵\(X\)看成\(n\)个\(m*1\)的向量\(X_i \quad(i=1,2,\cdots,n)\),之后选择与向量\(Y\)余弦相似度最大,即与\(Y\)最为接近的一个变量\(X_i\),使用类似于前向选择法中的残差计算方法得到新的目标\(Y_{err}\),此时不同于前向梯度法的一小步一小步走,而是走到出现一个\(X_j\quad(j=1,2,i-1,i+1,\cdots,n)\)的时候,此时\(X_i\)和\(Y_{err}\)的余弦相似度等于\(X_j\)和\(Y_{err}\)的余弦相似度,这个时候残差\(Y_{err}\)沿着\(X_i\)和\(X_j\)的角平分线方向走,知道出现第三个特征\(X_k\)和\(Y_{err}\)的相关度等于\(X_i\)和\(Y_{err}\)的余弦相似度等于\(X_j\)和\(Y_{err}\)的余弦相似度的时候,使用这三者的共同角平分线,作为残差\(Y_{err}\)的路径方向,直到所有变量取完了,停止算法,即可得到\(\omega\)。
一、举例
# 举例图例
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
%matplotlib inline
font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
# X1*w1
plt.annotate(xytext=(2, 5), xy=(8, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(6, 4.5, s='$X_1*\omega_1$', color='g')
# X1
plt.annotate(xytext=(2, 5), xy=(4, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2.5, 4.5, s='$X_1$', color='g')
# X2
plt.annotate(xytext=(2, 5), xy=(3, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(2, 6, s='$X_2$', color='g')
# Y
plt.annotate(xytext=(2, 5), xy=(12, 8), s='', color='r',
arrowprops=dict(arrowstyle="->", color='k'))
plt.text(5, 7.5, s='$Y$', color='g')
# X1
plt.annotate(xytext=(8, 5), xy=(10, 5), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(8.5, 4.5, s='$X_1$', color='g')
# X2
plt.annotate(xytext=(8, 5), xy=(9, 7), s='', color='r',
arrowprops=dict(arrowstyle="->", color='r'))
plt.text(8, 6, s='$X_2$', color='g')
# w2(X1+X2)
plt.annotate(xytext=(8, 5), xy=(12, 8), s='', color='r',
arrowprops=dict(arrowstyle="->", color='gray'))
plt.text(10.5, 6.3, s='$(X_1+X_2)\omega_2$', color='g')
plt.xlim(0, 13)
plt.ylim(2, 13)
plt.title('最小角回归法举例', fontproperties=font, fontsize=20)
plt.show()
上图假设\(X\)为\(2\)维,首先可以看出,离\(Y\)最接近的是\(X_1\),首先在\(X_1\)上走一段距离,知道残差和\(X_1\)的相关度等于残差和\(X_2\)的相关度,即残差在\(X_1\)和\(X_2\)的角平分线上,由于\(X\)为\(2\)维,此时沿着角平分线走,直到残差足够小时停止,如果此时\(X\)不是\(2\)维,则继续选择第3个、第4个特征走下去。
二、最小角回归法优缺点
2.1 优点
- 特别适合特征维度高于样本数的情况
2.2 缺点
- 迭代方向是根据目标的残差定的,所以算法对训练集中的噪声特别敏感
三、小结
前向选择法由于涉及到投影,只能给出一个近似解;前向梯度法则需要自己手动调试一个很好的\(\epsilon\)参数;最小角回归法结合了两者的优点,但是至于算法具体好坏害的取决于训练集,即算法的稳定性无法保证。
对算法具体计算有兴趣的同学,可以参考Bradley Efron的论文《Least Angle Regression》,https://pan.baidu.com/s/10if9FGdkwEZ4_BolzCGszA ,如果你下载看了,恭喜你入坑。