faster_rcnn test 浮点运算量

faster_rcnn test 浮点运算量_第1张图片


以上我的同学xzzppp(博客http://blog.csdn.net/xzzppp/article/details/53317011)总结的faster-RCNN 测试计算量总结,仅仅截取表格一部分,下载见点击打开链接

卷积层浮点运算计算量公式(参考21天实战caffe)是:

Caculation(conv n)=I*J*M*N*K*L

其中,I,J卷积核  M,N输出通道的特征图大小, K输入通道数,  L输出通道数  {KL个卷集核实现通道的转换}

列如:上图绿色框里列出了第二个卷积层参数里:I=J=5;M=73;N=121;K=96(上面一格);L=256

于是Caculation(conv2)=I*J*M*N*K*L=5*5*73*121*96*256=5426995200

各个卷积层计算类似。这样统计可以进行并行优化,减少运算。

另外,卷积层的学习参数数量计算公式:Params=I*J*K*L=5*5*96*256

那么第二级卷积层计算量-参数之比为CPR(Calculations to Paraments Ratio):

CPR=Calculations/Params=8833

注:输出特征图越大,CPR值越大,参数利用率越高,每次输入一批数据(B个样本),CPR可再提高B倍


你可能感兴趣的:(深度学习)