CDH(Cloudera's Distribution, including Apache Hadoop),是Hadoop众多分支中的一种,由Cloudera维护,基于稳定版本的Apache Hadoop构建,并集成了很多补丁,可直接用于生产环境。
Cloudera Manager则是为了便于在集群中进行Hadoop等大数据处理相关的服务安装和监控管理的组件,对集群中主机、Hadoop、HBase、Pig、Hive、Impala、Zookeeper、Solr、Oozie、Hue、Sqoop、Spark服务的安装配置管理做了极大简化。
实验环境:浪潮24核、64G内存、千兆网卡服务器3台以上;
操作系统:Ubuntu14.04;
Cloudera Manager版本:5.8.0
CDH版本: 5.8.0
本项目选择离线安装。
由于我们的操作系统为Ubuntu14.04,需要下载以下文件:
1> CDH-5.8.0-1.cdh5.8.0.p0.42-trusty.parcel
2> CDH-5.8.0-1.cdh5.8.0.p0.42-trusty.parcel.sha1
3> cloudera-manager-trusty-cm5.8.0_amd64.tar.gz
4> manifest.json
5> mysql-connector-java-6.0.4.jar
以下操作均用root用户操作,这里以三台机器为例。
$ vim /etc/hosts
192.168.3.57 CDH01
192.168.3.58 CDH02
192.168.3.59 CDH03
注意:这里需要将每台机器的ip及主机名对应关系都写进去,本机的也要写进去,否则启动Agent的时候会提示hostname解析错误。
针对所有节点,设置ssh无密码登陆(ubuntu的超级用户,非root)。这里打通的目的纯粹是为了登陆方便,与安装其实是无关的。
在主节点上执行下面命令,一路回车,生成无密码的密钥对:
$ ssh-keygen
然后拷贝到其他节点,命令如下:
$ ssh-copy-id -i ~/.ssh/id_rsa.pub CDH02
此时需要输入一遍密码。
测试:在主节点上ssh CDH02,正常情况下,不需要密码就能直接登陆进去了。
注意:这里只是将主节点和其他节点打通,也可以通过上述方式将集群中的机器相互SSH打通。
在所有节点上安装JDK8版本。下载jdk8,例如解压到/opt
文件夹下。然后修改环境变量:
sudo vim ~/.bashrc
文件末尾加入:
export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_60 ## 这里要注意目录要换成自己解压的jdk 目录
export CLASSPATH=.:${JAVA_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH
生效:
source ~/.bashrc
设置系统默认版本:
update-alternatives --install /usr/bin/java java /usr/lib/jvm/jdk1.8.0_60/bin/java 300
update-alternatives --install /usr/bin/javac javac /usr/lib/jvm/jdk1.8.0_60/bin/javac 300
update-alternatives --config java(如果本系统上只有一个JDK则不需配置)
选择JDK8即可
Java -version查看是否修改完成。
2.4 安装配置MySQL
针对主节点安装MySQL数据库,安装命令:
$ apt-get install mysql-server
创建CDH5所需数据库:
$ mysql -uroot -pzxsoft0#
# hive
> create database hive DEFAULT CHARSET utf8 COLLATE utf8_general_ci;
# oozie
> create database oozie DEFAULT CHARSET utf8 COLLATE utf8_general_ci;
# activity monitor
> create database amon DEFAULT CHARSET utf8 COLLATE utf8_general_ci;
# hue
> create database hue DEFAULT CHARSET utf8 COLLATE utf8_general_ci;
设置root授权访问以上所有的数据库:
# 授权root用户在主节点拥有所有数据库的访问权限
> grant all privileges on *.* to 'root'@'CDH01' identified by 'xxxx' with grant option;flush privileges;
ufw disable
2.6 NTP对时
所有节点安装ntp服务
apt-get install ntp
以三台服务器为例,cdh01,02,03.假设03为主服务器,其他两个为从机。则修改主服务器配置文件/etc/ntp.conf
vim /etc/ntp.conf
19-22/25行屏蔽掉
添加: server 127.127.1.0
fudge 127.127.1.0 stratum 8
注释掉Ubuntu server
从服务器:
vim /etc/ntp.conf
19-22行屏蔽掉
添加:server cdh01(主机端的名称)
注释掉Ubuntu server
保存之后从节点手动对下时间(过几分钟搞):
ntpdate -u cdh01
在主节点上,cloudera manager的目录默认位置在/opt下,解压:
$ tar xzvf cloudera-manager-trusty-cm5.8.0_amd64.tar.gz
将解压后的cm-5.8.0和cloudera目录(自建)放到/opt目录下。
在所有节点上:
拷贝jdbc的包mysql-connector-java-6.0.4.jar到/usr/share/java/下,并创建软链接:
$ ln -s /usr/share/java/mysql-connector-java-6.0.4.jar /usr/share/java/mysql-connector-java.jar
$ chmod 744 /usr/share/java/mysql-connector-java-6.0.4.jar
在主节点初始化CM5的数据库:
$ /opt/cm-5.8.0/share/cmf/schema/scm_prepare_database.sh mysql cm -hlocalhost -uroot -pzxsoft0# --scm-host localhost scm scm scm
修改/opt/cm-5.8.0/etc/cloudera-scm-agent/config.ini中的配置参数server_host为主节点的主机名。
同步Agent到其他节点,即将cm-5.8.0文件夹拷贝到其他从节点的对应文件夹下。
$ useradd --system --home=/opt/cm-5.8.0/run/cloudera-scm-server/ --no-create-home --shell=/bin/false --comment "Cloudera SCM User" cloudera-scm
这里准备Parcels是为了安装CDH5,将CHD5相关的Parcel包拷贝到主节点的/opt/cloudera/parcel-repo/目录中(parcel-repo需要手动创建)。
相关的文件如下:
1> CDH-5.8.0-1.cdh5.8.0.p0.42-trusty.parcel
2> CDH-5.8.0-1.cdh5.8.0.p0.42-trusty.parcel.sha1
3> manifest.json
最后将CDH-5.8.0-1.cdh5.8.0.p0.42-trusty.parcel.sha1,重命名为CDH-5.8.0-1.cdh5.8.0.p0.42-trusty.parcel.sha,这点必须注意,否则,系统会重新下载CDH-5.8.0-1.cdh5.8.0.p0.42-trusty.parcel文件。
在主节点上,启动Server:
$ /opt/cm-5.8.0/etc/init.d/cloudera-scm-server start
在所有节点上,启动Agent:(这里注意需要手动先创建一个文件夹)
$ mkdir /opt/cm-5.8.0/run/cloudera-scm-agent
然后再启动
$ /opt/cm-5.8.0/etc/init.d/cloudera-scm-agent start
我们启动的其实是个service脚本,需要停止服务将以上的start参数改为stop就可以了,重启是restart。
Cloudera Manager 系统的Server和Agent都启动以后,就可以进行CDH5的安装配置了。
这时可以通过浏览器访问主节点的7180端口测试一下了(由于CM Server的启动需要花点时间,这里可能要等待一会才能访问),默认的用户名和密码均为admin:
在集群的任意一台机器上执行以下模拟Pi的示例程序:
$ sudo -u hdfs hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar pi 10 100
或者:
$ sudo -u hdfs hadoop jar /opt/cloudera/parcels/CDH/jars/hadoop-mapreduce-examples-*.jar pi 10 100
执行过程需要花一定的时间,通过YARN的后台也可以看到MapReduce的执行状态:
MapReduce执行过程中终端的输出如下:
Number of Maps = 10
Samples per Map = 100
Wrote input for Map #0
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
Wrote input for Map #4
Wrote input for Map #5
Wrote input for Map #6
Wrote input for Map #7
Wrote input for Map #8
Wrote input for Map #9
Starting Job
14/10/13 01:15:34 INFO client.RMProxy: Connecting to ResourceManager at n1/192.168.1.161:803214/10/13 01:15:36 INFO input.FileInputFormat: Total input paths to process : 1014/10/13 01:15:37 INFO mapreduce.JobSubmitter: number of splits:1014/10/13 01:15:39 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1413132307582_0001
14/10/13 01:15:40 INFO impl.YarnClientImpl: Submitted application application_1413132307582_0001
14/10/13 01:15:40 INFO mapreduce.Job: The url to track the job: http://n1:8088/proxy/application_1413132307582_0001/14/10/13 01:15:40 INFO mapreduce.Job: Running job: job_1413132307582_0001
14/10/13 01:17:13 INFO mapreduce.Job: Job job_1413132307582_0001 running in uber mode : false14/10/13 01:17:13 INFO mapreduce.Job: map 0% reduce 0%14/10/13 01:18:02 INFO mapreduce.Job: map 10% reduce 0%14/10/13 01:18:25 INFO mapreduce.Job: map 20% reduce 0%14/10/13 01:18:35 INFO mapreduce.Job: map 30% reduce 0%14/10/13 01:18:45 INFO mapreduce.Job: map 40% reduce 0%14/10/13 01:18:53 INFO mapreduce.Job: map 50% reduce 0%14/10/13 01:19:01 INFO mapreduce.Job: map 60% reduce 0%14/10/13 01:19:09 INFO mapreduce.Job: map 70% reduce 0%14/10/13 01:19:17 INFO mapreduce.Job: map 80% reduce 0%14/10/13 01:19:25 INFO mapreduce.Job: map 90% reduce 0%14/10/13 01:19:33 INFO mapreduce.Job: map 100% reduce 0%14/10/13 01:19:51 INFO mapreduce.Job: map 100% reduce 100%14/10/13 01:19:53 INFO mapreduce.Job: Job job_1413132307582_0001 completed successfully
14/10/13 01:19:56 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=91
FILE: Number of bytes written=1027765
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=2560
HDFS: Number of bytes written=215
HDFS: Number of read operations=43
HDFS: Number of large read operations=0
HDFS: Number of write operations=3
Job Counters
Launched map tasks=10
Launched reduce tasks=1
Data-local map tasks=10
Total time spent by all maps in occupied slots (ms)=118215
Total time spent by all reduces in occupied slots (ms)=11894
Total time spent by all map tasks (ms)=118215
Total time spent by all reduce tasks (ms)=11894
Total vcore-seconds taken by all map tasks=118215
Total vcore-seconds taken by all reduce tasks=11894
Total megabyte-seconds taken by all map tasks=121052160
Total megabyte-seconds taken by all reduce tasks=12179456
Map-Reduce Framework
Map input records=10
Map output records=20
Map output bytes=180
Map output materialized bytes=340
Input split bytes=1380
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=340
Reduce input records=20
Reduce output records=0
Spilled Records=40
Shuffled Maps =10
Failed Shuffles=0
Merged Map outputs=10
GC time elapsed (ms)=1269
CPU time spent (ms)=9530
Physical memory (bytes) snapshot=3792773120
Virtual memory (bytes) snapshot=16157274112
Total committed heap usage (bytes)=2856624128
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=1180
File Output Format Counters
Bytes Written=97
Job Finished in 262.659 seconds
Estimated value of Pi is 3.14800000000000000000
首次登陆Hue会让设置一个初试的用户名和密码,设置好,登陆到后台,会做一次检查,一切正常后会提示:
到这里表明我们的集群可以使用了。
Hive和Oozie所依赖的JDBC包没有,需要拷贝和添加软连接来解决。注意:在所有机器上,需要将mysql驱动拷贝到/usr/share/java/目录下,然后创建软链接。
$ ln -s /usr/share/java/mysql-connector-java-6.0.4.jar /usr/share/java/mysql-connector-java.jar
$ chmod 744 /usr/share/java/mysql-connector-java-6.0.4.jar
在所有机器上执行下面命令安装:
$ apt-get install install libxslt-python*
按照系统提示修改。
Agent启动后,安装阶段“当前管理的主机”中显示的节点不全,每次刷新显示的都不一样。
Agent的错误日志表现如下:
[18/Nov/2014 21:12:56 +0000] 22681 MainThread agent ERROR Heartbeating to master:7182 failed.
Traceback (most recent call last):
File "/home/opt/cm-5.8.0/lib64/cmf/agent/src/cmf/agent.py", line 820, in send_heartbeat
response = self.requestor.request('heartbeat', dict(request=heartbeat))
File "/home/opt/cm-5.8.0/lib64/cmf/agent/build/env/lib/python2.6/site-packages/avro-1.6.3-py2.6.egg/avro/ipc.py", line 139, in request
return self.issue_request(call_request, message_name, request_datum)
File "/home/opt/cm-5.8.0/lib64/cmf/agent/build/env/lib/python2.6/site-packages/avro-1.6.3-py2.6.egg/avro/ipc.py", line 255, in issue_request
return self.read_call_response(message_name, buffer_decoder)
File "/home/opt/cm-5.8.0/lib64/cmf/agent/build/env/lib/python2.6/site-packages/avro-1.6.3-py2.6.egg/avro/ipc.py", line 235, in read_call_response
raise self.read_error(writers_schema, readers_schema, decoder)
File "/home/opt/cm-5.8.0/lib64/cmf/agent/build/env/lib/python2.6/site-packages/avro-1.6.3-py2.6.egg/avro/ipc.py", line 244, in read_error
return AvroRemoteException(datum_reader.read(decoder))
File "/home/opt/cm-5.8.0/lib64/cmf/agent/build/env/lib/python2.6/site-packages/avro-1.6.3-py2.6.egg/avro/io.py", line 444, in read
return self.read_data(self.writers_schema, self.readers_schema, decoder)
File "/home/opt/cm-5.8.0/lib64/cmf/agent/build/env/lib/python2.6/site-packages/avro-1.6.3-py2.6.egg/avro/io.py", line 448, in read_data
if not DatumReader.match_schemas(writers_schema, readers_schema):
File "/home/opt/cm-5.8.0/lib64/cmf/agent/build/env/lib/python2.6/site-packages/avro-1.6.3-py2.6.egg/avro/io.py", line 379, in match_schemas
w_type = writers_schema.type
AttributeError: 'NoneType' object has no attribute 'type'
这是由于在主节点上启动了Agent后,又将Agent scp到了其他节点上导致的,首次启动Agent,它会生成一个uuid,路径为:/opt/cm-5.8.0/lib/cloudera-scm-agent/uuid,这样的话每台机器上的Agent的uuid都是一样的了,就会出现紊乱的情况。
解决方案:
删除/opt/cm-5.8.0/lib/cloudera-scm-agent/目录下的所有文件,并清空主节点CM数据库。