MNIST 手写数字识别是一个比较简单的入门项目,相当于深度学习中的 Hello World,可以让我们快速了解构建神经网络的大致过程。虽然网上的案例比较多,但还是要自己实现一遍。代码采用 PyTorch 1.0 编写并运行。
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
import cv2
torchvision 用于下载并导入数据集
cv2 用于展示数据的图像
# 下载训练集
train_dataset = datasets.MNIST(root='./num/',
train=True,
transform=transforms.ToTensor(),
download=True)
# 下载测试集
test_dataset = datasets.MNIST(root='./num/',
train=False,
transform=transforms.ToTensor(),
download=True)
root 用于指定数据集在下载之后的存放路径
transform 用于指定导入数据集需要对数据进行那种变化操作
train是指定在数据集下载完成后需要载入的那部分数据,设置为 True 则说明载入的是该数据集的训练集部分,设置为 False 则说明载入的是该数据集的测试集部分
download 为 True 表示数据集需要程序自动帮你下载
这样设置并运行后,就会在指定路径中下载 MNIST 数据集,之后就可以使用了。
# dataset 参数用于指定我们载入的数据集名称
# batch_size参数设置了每个包中的图片数据个数
# 在装载的过程会将数据随机打乱顺序并进打包
# 装载训练集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
# 装载测试集
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
#建立一个数据迭代器
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
在装载完成后,可以选取其中一个批次的数据进行预览:
# 实现单张图片可视化
images, labels = next(iter(train_loader))
img = torchvision.utils.make_grid(images)
img = img.numpy().transpose(1, 2, 0)
std = [0.5, 0.5, 0.5]
mean = [0.5, 0.5, 0.5]
img = img * std + mean
print(labels)
cv2.imshow('win', img)
key_pressed = cv2.waitKey(0)
在以上代码中使用了 iter 和 next 来获取取一个批次的图片数据和其对应的图片标签,然后使用 torchvision.utils 中的 make_grid 类方法将一个批次的图片构造成网格模式。
# 卷积层使用 torch.nn.Conv2d
# 激活层使用 torch.nn.ReLU
# 池化层使用 torch.nn.MaxPool2d
# 全连接层使用 torch.nn.Linear
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(1, 6, 3, 1, 2), nn.ReLU(),
nn.MaxPool2d(2, 2))
self.conv2 = nn.Sequential(nn.Conv2d(6, 16, 5), nn.ReLU(),
nn.MaxPool2d(2, 2))
self.fc1 = nn.Sequential(nn.Linear(16 * 5 * 5, 120),
nn.BatchNorm1d(120), nn.ReLU())
self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.BatchNorm1d(84),
nn.ReLU(),
nn.Linear(84, 10))
# 最后的结果一定要变为 10,因为数字的选项是 0 ~ 9
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.fc2(x)
return x
前向传播内容:
首先经过 self.conv1() 和 self.conv1() 进行卷积处理
然后进行 x = x.view(x.size()[0], -1),对参数实现扁平化(便于后面全连接层输入)
最后通过 self.fc1() 和 self.fc2() 定义的全连接层进行最后的分类
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = 64
LR = 0.001
net = LeNet().to(device)
# 损失函数使用交叉熵
criterion = nn.CrossEntropyLoss()
# 优化函数使用 Adam 自适应优化算法
optimizer = optim.Adam(
net.parameters(),
lr=LR,
)
epoch = 1
if __name__ == '__main__':
for epoch in range(epoch):
sum_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
inputs, labels = Variable(inputs).cuda(), Variable(labels).cuda()
optimizer.zero_grad() #将梯度归零
outputs = net(inputs) #将数据传入网络进行前向运算
loss = criterion(outputs, labels) #得到损失函数
loss.backward() #反向传播
optimizer.step() #通过梯度做一步参数更新
# print(loss)
sum_loss += loss.item()
if i % 100 == 99:
print('[%d,%d] loss:%.03f' %
(epoch + 1, i + 1, sum_loss / 100))
sum_loss = 0.0
net.eval() #将模型变换为测试模式
correct = 0
total = 0
for data_test in test_loader:
images, labels = data_test
images, labels = Variable(images).cuda(), Variable(labels).cuda()
output_test = net(images)
_, predicted = torch.max(output_test, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print("correct1: ", correct)
print("Test acc: {0}".format(correct.item() /
len(test_dataset)))