右旋转
然后就是代码
这是旋转右代码
// 对节点y进行向右旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// x T4 向右旋转 (y) z y
// / \ - - - - - - - -> / \ / \
// z T3 T1 T2 T3 T4
// / \
// T1 T2
private Node rightRotate(Node y) {
Node x = y.left;
Node T3 = x.right;
// 向右旋转过程
x.right = y;
y.left = T3;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)//如果左节点的平衡大于1 那么就右选择
return rightRotate(node);
// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(node);
// if(Math.abs(balanceFactor) > 1)
// System.out.println("unbalanced : " + balanceFactor);
// 平衡维护
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);
return node;
}
左旋转
左旋转和右旋转思路一样的,就是旋转方向不一样,判断因子也不一样
公式 T4 把x左节点放在一边,也就是T3 x.left=y y.right=T3 代码其实和右旋转差不多 左旋转代码 LR和RL都要旋转两次 首先左旋转,就变为了LL的情况,在LL的方法就行 转为了LL的情况 RL 和左旋转差不多,都是一样的思路,右旋转,在根据右旋转的情况 代码如下 删除就添加那些平衡代码 // 对节点y进行向左旋转操作,返回旋转后新的根节点x
// y x
// / \ / \
// T1 x 向左旋转 (y) y z
// / \ - - - - - - - -> / \ / \
// T2 z T1 T2 T3 T4
// / \
// T3 T4
private Node leftRotate(Node y) {
Node x = y.right;
Node T2 = x.left;
// 向左旋转过程
x.left = y;
y.right = T2;
// 更新height
y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;
return x;
}
// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(node);
// if(Math.abs(balanceFactor) > 1)
// System.out.println("unbalanced : " + balanceFactor);
// 平衡维护
if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
return rightRotate(node);
if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
return leftRotate(node);
return node;
}
LR RL
这些单纯的旋转都是LL 和RR
但是下面这些是两次选择 LR和RL
这就是两个状态的代码
//LR
if(balanceFactor < -1 && getBalanceFactor(node.left) > 0){
node.right=rightRotate(node.left);
return rightRotate(node);
}
//RL
if(balanceFactor < -1 && getBalanceFactor(node.right) > 0){
node.right=rightRotate(node.right);
return leftRotate(node);
}
//LR
if(balanceFactor < -1 && getBalanceFactor(node.left) > 0){
node.right=rightRotate(node.left);
return rightRotate(node);
}
//RL
if(balanceFactor < -1 && getBalanceFactor(node.right) > 0){
node.right=rightRotate(node.right);
return leftRotate(node);
}// 向以node为根的二分搜索树中插入元素(key, value),递归算法
// 返回插入新节点后二分搜索树的根
private Node add(Node node, K key, V value){
if(node == null){
size ++;
return new Node(key, value);
}
if(key.compareTo(node.key) < 0)
node.left = add(node.left, key, value);
else if(key.compareTo(node.key) > 0)
node.right = add(node.right, key, value);
else // key.compareTo(node.key) == 0
node.value = value;
// 更新height
node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(node);
if(Math.abs(balanceFactor) > 1)
System.out.println("unbalanced : " + balanceFactor);
//平衡维护
if(balanceFactor >1 && getBalanceFactor(node.left) >=0)//右旋转
return rightRotate(node);
if(balanceFactor <-1 && getBalanceFactor(node.right) <=0)//左旋转
return leftRotate(node);
//LR
if(balanceFactor < -1 && getBalanceFactor(node.left) > 0){
node.right=rightRotate(node.left);
return rightRotate(node);
}
//RL
if(balanceFactor < -1 && getBalanceFactor(node.right) > 0){
node.right=rightRotate(node.right);
return leftRotate(node);
}
return node;
}
private Node remove(Node node, K key){
if( node == null )
return null;
Node retNode;
if( key.compareTo(node.key) < 0 ){
node.left = remove(node.left , key);
// return node;
retNode = node;
}
else if(key.compareTo(node.key) > 0 ){
node.right = remove(node.right, key);
// return node;
retNode = node;
}
else{ // key.compareTo(node.key) == 0
// 待删除节点左子树为空的情况
if(node.left == null){
Node rightNode = node.right;
node.right = null;
size --;
// return rightNode;
retNode = rightNode;
}
// 待删除节点右子树为空的情况
else if(node.right == null){
Node leftNode = node.left;
node.left = null;
size --;
// return leftNode;
retNode = leftNode;
}
// 待删除节点左右子树均不为空的情况
else{
// 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
// 用这个节点顶替待删除节点的位置
Node successor = minimum(node.right);
//successor.right = removeMin(node.right);
successor.right = remove(node.right, successor.key);
successor.left = node.left;
node.left = node.right = null;
// return successor;
retNode = successor;
}
}
if(retNode == null)
return null;
// 更新height
retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));
// 计算平衡因子
int balanceFactor = getBalanceFactor(retNode);
// 平衡维护
// LL
if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
return rightRotate(retNode);
// RR
if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
return leftRotate(retNode);
// LR
if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
retNode.left = leftRotate(retNode.left);
return rightRotate(retNode);
}
// RL
if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
retNode.right = rightRotate(retNode.right);
return leftRotate(retNode);
}
return retNode;
}