Hive的外部表

1、在原来表emp的路径下再创建一个emp1的表:

create table if not exists emp1(
empno int,
enname string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int
)
row format delimited fields terminated by '\t'
LOCATION '/user/hive/warehouse/db_emp.db/emp';

2、查询emp1:

hive (db_emp)> select * from emp1;
OK
emp1.empno	emp1.enname	emp1.job	emp1.mgr	emp1.hiredate	emp1.sal	emp1.comm	emp1.deptno
7499	ALLEN 	SALESMAN 	7698	1981-02-20	1600.0	300.0	30
7521	WARD  	SALESMAN 	7698	1981-02-22	1250.0	500.0	30
7566	JONES 	MANAGER  	7839	1981-04-02	2975.0	0.0	20
7654	MARTIN	SALESMAN 	7698	1981-09-28	1250.0	1400.0	30
7698	BLAKE 	MANAGER  	7839	1981-05-01	2850.0	0.0	30
7782	CLARK 	MANAGER  	7839	1981-06-09	2450.0	0.0	10
7788	SCOTT 	ANALYST  	7566	1987-07-13	3000.0	0.0	20
7839	KING  	PRESIDENT	NULL	1981-11-07	5000.0	0.0	10
7844	TURNER	SALESMAN 	7698	1981-09-08	1500.0	0.0	30
7876	ADAMS 	CLERK    	7788	1987-07-13	1100.0	0.0	20
7900	JAMES 	CLERK    	7698	1981-12-03	950.0	0.0	30
7902	FORD  	ANALYST  	7566	1981-12-03	3000.0	0.0	20
7934	MILLER	CLERK    	7782	1982-01-23	1300.0	0.0	10
Time taken: 0.503 seconds, Fetched: 13 row(s)

 emp1和emp共用Hdfs中的数据:/user/hive/warehouse/db_emp.db/emp

3、删除表emp1:

hive (db_emp)> drop table emp1;
OK
Time taken: 0.592 seconds
hive (db_emp)> show tables;
OK
tab_name
dept
emp
Time taken: 0.083 seconds, Fetched: 2 row(s)

4、查询表emp,可以发现emp中数据已经被清除,只剩下表结构了。

hive (db_emp)> select * from emp;
OK
emp.empno	emp.enname	emp.job	emp.mgr	emp.hiredate	emp.sal	emp.comm	emp.deptno
Time taken: 0.121 seconds

 5、为了规避这样的问题,创建外部表:

create EXTERNAL table if not exists dept1(
deptno int,
dnname string,
loc string
)
row format delimited fields terminated by '\t'
LOCATION '/user/hive/warehouse/db_emp.db/dept';

6、查询dept1表中数据:

hive (db_emp)> select * from dept1;
OK
dept1.deptno	dept1.dnname	dept1.loc
10	ACCOUNTING	NEW YORK
20	RESEARCH  	DALLAS
30	SALES     	CHICAGO
40	OPERATIONS	BOSTON
Time taken: 0.166 seconds, Fetched: 4 row(s)

7、查看表dept1 的信息,表类型为:EXTERNAL_TABLE

hive (db_emp)> desc formatted dept1;
OK
col_name	data_type	comment
# col_name            	data_type           	comment             
	 	 
deptno              	int                 	                    
dnname              	string              	                    
loc                 	string              	                    
	 	 
# Detailed Table Information	 	 
Database:           	db_emp              	 
Owner:              	root                	 
CreateTime:         	Wed Jul 25 04:13:36 CST 2018	 
LastAccessTime:     	UNKNOWN             	 
Protect Mode:       	None                	 
Retention:          	0                   	 
Location:           	hdfs://ns1/user/hive/warehouse/db_emp.db/dept	 
Table Type:         	EXTERNAL_TABLE      	 
Table Parameters:	 	 
	COLUMN_STATS_ACCURATE	false               
	EXTERNAL            	TRUE                
	numFiles            	0                   
	numRows             	-1                  
	rawDataSize         	-1                  
	totalSize           	0                   
	transient_lastDdlTime	1532463216          
	 	 
# Storage Information	 	 
SerDe Library:      	org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe	 
InputFormat:        	org.apache.hadoop.mapred.TextInputFormat	 
OutputFormat:       	org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat	 
Compressed:         	No                  	 
Num Buckets:        	-1                  	 
Bucket Columns:     	[]                  	 
Sort Columns:       	[]                  	 
Storage Desc Params:	 	 
	field.delim         	\t                  
	serialization.format	\t                  
Time taken: 0.087 seconds, Fetched: 35 row(s)

8、删除表dept1,并查询表dept的数据,可以发现dept的数据并没有再次被删除了。

hive (db_emp)> drop table dept1;
OK
Time taken: 0.086 seconds
hive (db_emp)> show tables;
OK
tab_name
dept
emp
Time taken: 0.02 seconds, Fetched: 2 row(s)
hive (db_emp)> select * from dept;
OK
dept.deptno	dept.dnname	dept.loc
10	ACCOUNTING	NEW YORK
20	RESEARCH  	DALLAS
30	SALES     	CHICAGO
40	OPERATIONS	BOSTON
Time taken: 0.098 seconds, Fetched: 4 row(s)

总结:外部表可以解决一份数据多人共用数据的场景,保证了数据的安全性。

 

你可能感兴趣的:(大数据)