Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示

     最近做起了数据优化的工作,主要是针对对象模型数据的导入,这里透漏下成效:利用mybatis的批量插入,1000条数据的导入(insert)只用了52ms甚至根据机子的性能可以更快,当然这只是针对insert层的优化,还有一个更要命更耗时的就是,对象主键ID的获取,如果采用数据库自带的自增主键的话,这种情况是很糟糕的,一旦涉及并发,必死无疑,当然这个概率比中彩票要高的很多,我不打算采用,采用了另一个,就是为对象建立一个全局序列,即使在并发状态下,数据库也会针对当前序列建立一个序列锁,保证并发或多线程下不会有相同的序列值产生,但是这样太耗时间了,假如我导入了1万个对象,那么就需要开一万个session连接数据库,以select获得当前对象渴望的序列值,而且为了避免mybatis将select的结果放入缓存导致后续取的序列值一样(对象主键ID一样的话,必然在insert的时候造成主键约束),还得每次select的时候清空mybatis的缓存,这又是一笔开销,刚开始没办法,采用的就是这种方法,结果导致:


     通过AOP切面技术,对单次请求的100万条数据的后台所对应的方法调用情况进行了一次统计,发现,整个百万级数据的导入insert假如消耗了1s的话,那么这个百万条数据的select操作可能要100s,没错,select比insert还要耗时,这不是吹嘘,这就是赤裸裸的挑衅啊,怎么办?

     我们想一下,数据库既然能创造出序列值,每次select的时候都会拿到不一样的序列值,我们是不是可以在我们的项目中,将这种序列值模拟创建到内存中呢,如果这样的话,性能肯定会大大提升,一是避免了mybatis开session访问数据库的开销,二是避免了在并发下遇到序列锁而造成的开销


    话不多说,先来演示下,从数据库拿1000个序列值的耗时情况(对照上面说的,结合下面的案列,我们来一起分析一下)


Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第1张图片


主要看结果,过程忽略,走一波测试,贴出结果:



Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第2张图片



上面的val真的是从数据库里面取的,真的是很耗时的:


Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第3张图片



再来看另一种方法,时间有限,不啰嗦了,直接上网上搜的一大神的demo:


Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第4张图片



IdWorker.java


import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;

/**
 * 

名称:IdWorker.java

*

描述:分布式自增长ID

*
 *     Twitter的 Snowflake JAVA实现方案
 * 
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用: * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间, * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识), * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分), * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。 *

* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加)) */ public class IdWorker { // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动) private final static long twepoch = 1288834974657L; // 机器标识位数 private final static long workerIdBits = 5L; // 数据中心标识位数 private final static long datacenterIdBits = 5L; // 机器ID最大值 private final static long maxWorkerId = -1L ^ (-1L << workerIdBits); // 数据中心ID最大值 private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // 毫秒内自增位 private final static long sequenceBits = 12L; // 机器ID偏左移12位 private final static long workerIdShift = sequenceBits; // 数据中心ID左移17位 private final static long datacenterIdShift = sequenceBits + workerIdBits; // 时间毫秒左移22位 private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final static long sequenceMask = -1L ^ (-1L << sequenceBits); /* 上次生产id时间戳 */ private static long lastTimestamp = -1L; // 0,并发控制 private long sequence = 0L; private final long workerId; // 数据标识id部分 private final long datacenterId; public IdWorker(){ this.datacenterId = getDatacenterId(maxDatacenterId); this.workerId = getMaxWorkerId(datacenterId, maxWorkerId); } /** * @param workerId * 工作机器ID * @param datacenterId * 序列号 */ public IdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } /** * 获取下一个ID * * @return */ public synchronized long nextId() { long timestamp = timeGen(); if (timestamp < lastTimestamp) { throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } if (lastTimestamp == timestamp) { // 当前毫秒内,则+1 sequence = (sequence + 1) & sequenceMask; if (sequence == 0) { // 当前毫秒内计数满了,则等待下一秒 timestamp = tilNextMillis(lastTimestamp); } } else { sequence = 0L; } lastTimestamp = timestamp; // ID偏移组合生成最终的ID,并返回ID long nextId = ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence; return nextId; } private long tilNextMillis(final long lastTimestamp) { long timestamp = this.timeGen(); while (timestamp <= lastTimestamp) { timestamp = this.timeGen(); } return timestamp; } private long timeGen() { return System.currentTimeMillis(); } /** *

* 获取 maxWorkerId *

*/ protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) { StringBuffer mpid = new StringBuffer(); mpid.append(datacenterId); String name = ManagementFactory.getRuntimeMXBean().getName(); if (!name.isEmpty()) { /* * GET jvmPid */ mpid.append(name.split("@")[0]); } /* * MAC + PID 的 hashcode 获取16个低位 */ return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1); } /** *

* 数据标识id部分 *

*/ protected static long getDatacenterId(long maxDatacenterId) { long id = 0L; try { InetAddress ip = InetAddress.getLocalHost(); NetworkInterface network = NetworkInterface.getByInetAddress(ip); if (network == null) { id = 1L; } else { byte[] mac = network.getHardwareAddress(); id = ((0x000000FF & (long) mac[mac.length - 1]) | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6; id = id % (maxDatacenterId + 1); } } catch (Exception e) { System.out.println(" getDatacenterId: " + e.getMessage()); } return id; } public static void main(String[] args) { // IdWorker idWorker = new IdWorker(31,31); // System.out.println("idWorker="+idWorker.nextId()); IdWorker id = new IdWorker(0,1); // System.out.println("id="+id.nextId()); // System.out.println(id.datacenterId); // System.out.println(id.workerId); for(int i=0;i<9000;i++){ System.err.println(id.nextId()); } }



内部main测试下,是否可以跑通


Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第5张图片



怎么还牵扯到分布式呢? 因为,不同的tomcat部署该项目,是可以配置当前项目里这个IdWorker的机器ID(workID)和数据标识ID(datacenterID)的,比如我们在我们的Spring-Boot里面如下配置:



Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第6张图片



然后在我们的Service里面,通过注解拿到这两个值


Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第7张图片



      还是要强调下这两个值,这两个值的组合直接作用在IdWorker的对象上,这就使不同的机器即使同一时间获取ID,也会不一样,具体可以自己下来进行一番测试,由于时间仓促,下面直接进行Service层IDWorker的性能测试



Spring-boot+分布式下高性能全局对象唯一ID生成器代码+实例演示_第8张图片


       不要问我性能确实提升了不少但是我拿到了这些ID有什么用? 自己下去尝试吧。

你可能感兴趣的:(Spring-Boot)