OpenCV基础04(直方图与匹配)

第七章 直方图与匹配

详细请看:http://blog.csdn.net/xiaowei_cqu/article/details/7600666
1)直方图数据结构:
	typename struct CvHistogram
	{
		int type;
		CvArr* bins;
		float thresh[CV_MAX_DIM][2];
		float** thresh2;
		CvMatND mat;//很多数据都在这个矩阵中,可以访问
	}CvHistogram;
    直方图的创建、计算和访问,匹配:
	//创建直方图
	CvHistogram* cvCreateHist(...);
	CvHistogram* cvMakeHistHeaderForArray(..);//根据已知的数据创建直方图;
	void cvCalcHist(..);//从图像计算直方图,调用之前要用cvSplit()进行通道分割
	void cvSetHistBinRanges(...);//设置直方图ranges范围
	void cvReleaseHist(..);//释放直方图
	//直方图的访问
	void cvQueryHistValue_1D(...);//对应有_2D,_3D,_nD,访问直方图bins中的数据,也可以hist->bins来访问。
	float* cvGetHistValue_1D(...);//同上。
	//直方图操作
	cvNormalizeHist(...);//直方图归一化
	cvThreshHist(..);//直方图阈值(对bins值的阈值)
	cvCopyHist(..);//复制
	double cvCompareHist(...);//直方图匹配,可以选择距离测量的方法

2)陆地移动距离(EMD)

     光线的变化能引起图像颜色值的漂移,尽管这些漂移没有改变颜色直方图的形状,但是这些漂移引起了颜色值位置的变化,从而导致匹配策略失效。

陆地移动距离是一种度量准则,它实际上市度量怎样将一个直方图转变为另一个直方图的形状,包括移动直方图的部分(或全部)到一个新的位置,可以在任何维的直方图上进行这种度量。

CalcEMD2

两个加权点集之间计算最小工作距离

float cvCalcEMD2( const CvArr* signature1, const CvArr* signature2, int distance_type,
                  CvDistanceFunction distance_func=NULL, const CvArr* cost_matrix=NULL,
                  CvArr* flow=NULL, float* lower_bound=NULL, void* userdata=NULL );
typedef float (*CvDistanceFunction)(const float* f1, const float* f2, void* userdata);
例子,来自:http://blog.csdn.net/thystar/article/details/40934073
/*
用EMD度量两个分布的相似性
这里,用lena和lena直方图均衡化的结果度量。
*/

#include "highgui.h"
#include "cv.h"
#include
using namespace std;

void doEMD2(IplImage* img)
{
	/*对输入的图像做直方图均衡化处理,生成img2*/
	IplImage* pImageChannel[4] = {0, 0, 0, 0};
	IplImage* img2 = cvCreateImage(cvGetSize(img), img->depth, img->nChannels);
	for(int i = 0; i < img->nChannels; i++)
	{
		pImageChannel[i] = cvCreateImage(cvGetSize(img), img->depth,1);
	}
	//信道分离
	cvSplit(img, pImageChannel[0], pImageChannel[1], pImageChannel[2],pImageChannel[3]);
	for(int i = 0; i < img2->nChannels; i++)
	{
		//直方图均衡化
		cvEqualizeHist(pImageChannel[i], pImageChannel[i]);
	}
	//信道组合
	cvMerge(pImageChannel[0],pImageChannel[1], pImageChannel[2],pImageChannel[3], img2);

	//绘制直方图
	int h_bins = 16, s_bins = 8;
	int hist_size[] = {h_bins, s_bins};

	//H 分量的变化范围
	float h_ranges[] = {0,180};
	//S 分量的变化范围
	float s_ranges[] = {0,255};
	float* ranges[] = {h_ranges,s_ranges};

	IplImage* hsv = cvCreateImage(cvGetSize(img), 8, 3);
	IplImage* hsv2 = cvCreateImage(cvGetSize(img2), 8, 3);

	IplImage* h_plane = cvCreateImage(cvGetSize(img), 8, 1);
	IplImage* s_plane = cvCreateImage(cvGetSize(img), 8, 1);
	IplImage* v_plane = cvCreateImage(cvGetSize(img), 8, 1);
	IplImage* planes[] = {h_plane, s_plane};

	IplImage* h_plane2 = cvCreateImage(cvGetSize(img2), 8, 1);
	IplImage* s_plane2 = cvCreateImage(cvGetSize(img2), 8, 1);
	IplImage* v_plane2 = cvCreateImage(cvGetSize(img2), 8, 1);
	IplImage* planes2[] = {h_plane2, s_plane2};

	// 将两幅图像转换到HSV颜色空间
	cvCvtColor(img, hsv, CV_BGR2HSV);
	cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, 0);
	cvCvtColor(img2, hsv2, CV_BGR2HSV);
	cvCvtPixToPlane(hsv2, h_plane2, s_plane2, v_plane2, 0);

	// 创建直方图
	CvHistogram* hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
	CvHistogram* hist2 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
	// 根据H,S两个平面数据统计直方图
	cvCalcHist(planes, hist, 0, 0);
	cvCalcHist(planes2, hist2, 0, 0);

	//获取直方图统计
	///float max_value;
	//float max_value2;
	//cvGetMinMaxHistValue(hist, 0, &max_value, 0,0);
	//cvGetMinMaxHistValue(hist2, 0, &max_value2, 0, 0);

	//设置直方图显示图像
	int height = 240;
	int width = (h_bins * s_bins * 6);

	IplImage* hist_img = cvCreateImage(cvSize(width, height), 8, 3);
	IplImage* hist_img2 = cvCreateImage(cvSize(width, height), 8, 3);
	cvZero(hist_img);
	cvZero(hist_img2);

	//用来进行HSV到RGB颜色转换的临时图像
	//IplImage* hsv_color = cvCreateImage(cvSize(1,1), 8, 3);
	//IplImage* rgb_color = cvCreateImage(cvSize(1,1), 8, 3);
	//int bin_w = width/(h_bins * s_bins);

	//
	CvMat* sig1, *sig2;
	int numrows = h_bins*s_bins;

	sig1 = cvCreateMat(numrows, 3, CV_32FC1);
	sig2 = cvCreateMat(numrows, 3, CV_32FC1);
	for(int h = 0; h < h_bins; h++)
	{
		for(int s = 0; s < s_bins; s++)
		{
			//int i = h * s_bins + s;
			// 获得直方图中的统计次数, 计算显示在图中的高度
			float bin_val = cvQueryHistValue_2D(hist, h,s);
			cvSet2D(sig1, h*s_bins + s, 0, cvScalar(bin_val));
			cvSet2D(sig1, h*s_bins + s, 1, cvScalar(h));
			cvSet2D(sig1, h*s_bins + s, 2, cvScalar(s));
			bin_val = cvQueryHistValue_2D(hist2,h,s);
			cvSet2D(sig2, h*s_bins + s, 0, cvScalar(bin_val));
			cvSet2D(sig2, h*s_bins + s, 1, cvScalar(h));
			cvSet2D(sig2, h*s_bins + s, 2, cvScalar(s));
 		}
	}
	float emd = cvCalcEMD2(sig1,sig2,CV_DIST_L2);
	cout<< emd<

3)反投影
void cvCalcBackProjectPatch( IplImage** image, CvArr* dst,
                             CvSize patch_size, CvHistogram* hist,
                             int method, double factor );





你可能感兴趣的:(OpenCV基础04(直方图与匹配))