TiDB 总结

TiDB

tidb和mysql几乎完全兼容,所以我们的程序没有任何改动就能完成数据库从mysql到TiDb的转换,TiDB是一个分布式NewSQL数据库。它支持水平弹性扩展、ACID 事务、标准 SQL、MySQL 语法和 MySQL协议,具有数据强一致的高可用特性,是一个不仅适合 OLTP 场景还适合 OLAP 场景的混合数据库。

SQL、NoSQL和NewSQL

单机数据库: MySQL、PostgreSQL

存储

数据库最根本的功能是能把数据存下来。

TiKV – Key-Value存储

特点:

  1. 这是一个巨大的 Map,也就是存储的是 Key-Value pair
  2. 这个 Map 中的 Key-Value pair 按照 Key 的二进制顺序有序,也就是我们可以 Seek 到某一个 Key 的位置,然后不断的调用 Next 方法以递增的顺序获取比这个 Key 大的 Key-Value

RocksDB

TiKV 没有选择直接向磁盘上写数据,而是把数据保存在 RocksDB 中,具体的数据落地由 RocksDB 负责。

原因:开发一个单机存储引擎工作量很大…。

Raft

TiKV 利用 Raft 来做数据复制,每个数据变更都会落地为一条 Raft 日志,通过 Raft 的日志复制功能,将数据安全可靠地同步到 Group 的多数节点中。

保证单机失效的情况下,数据不丢失,不出错!把数据复制到多台机器上,这样一台机器挂了,我们还有其他的机器上的副本;复杂来说,我们还需要这个复制方案是可靠、高效并且能处理副本失效的情况。

Raft是一个一致性协议,功能:Leader 选举、成员变更、日志复制。

Region

实现存储的水平扩展,我们需要将数据分散在多台机器上。(分布式)

将数据分散在多台机器上有两种比较典型的方案:一种是按照 Key 做 Hash,根据 Hash 值选择对应的存储节点;另一种是分 Range,某一段连续的 Key 都保存在一个存储节点上

TiKV 选择了第二种方式,将整个 Key-Value 空间分成很多段,每一段是一系列连续的 Key,我们将每一段叫做一个 Region,并且我们会尽量保持每个 Region 中保存的数据不超过一定的大小(这个大小可以配置,目前默认是 64mb)。每一个 Region 都可以用 StartKey 到 EndKey 这样一个左闭右开区间来描述。

  1. 数据按照 Key 切分成很多 Region,每个 Region 的数据只会保存在一个节点上面。
  2. TiKV 是以 Region 为单位做数据的复制,也就是一个 Region 的数据会保存多个副本(Replica)。Replica 之间是通过 Raft 来保持数据的一致。一个 Region 的多个 Replica 会保存在不同的节点上,构成一个 Raft Group。其中一个 Replica 会作为这个 Group 的 Leader,其他的 Replica 作为 Follower。所有的读和写都是通过 Leader 进行,再由 Leader 复制给 Follower。

MVCC多版本控制

TiKV 的 MVCC 实现是通过在 Key 后面添加 Version 来实现多版本控制

Key1 -> Value
Key2 -> Value
……
KeyN -> Value

改后->

Key1-Version3 -> Value
Key1-Version2 -> Value
Key1-Version1 -> Value
……
Key2-Version4 -> Value
Key2-Version3 -> Value
Key2-Version2 -> Value
Key2-Version1 -> Value
……
KeyN-Version2 -> Value
KeyN-Version1 -> Value
……

注意,对于同一个 Key 的多个版本,我们把版本号较大的放在前面,版本号小的放在后面(回忆一下 Key-Value 一节我们介绍过的 Key 是有序的排列),这样当用户通过一个 Key + Version 来获取 Value 的时候,可以将 Key 和 Version 构造出 MVCC 的 Key,也就是 Key-Version。然后可以直接 Seek(Key-Version),定位到第一个大于等于这个 Key-Version 的位置。

事务

TiKV 的事务采用乐观锁,事务的执行过程中,不会检测写写冲突,只有在提交过程中,才会做冲突检测,冲突的双方中比较早完成提交的会写入成功,另一方会尝试重新执行整个事务。当业务的写入冲突不严重的情况下,这种模型性能会很好,比如随机更新表中某一行的数据,并且表很大。但是如果业务的写入冲突严重,性能就会很差,举一个极端的例子,就是计数器,多个客户端同时修改少量行,导致冲突严重的,造成大量的无效重试。

计算

存储

参考文档-存储
参考文档-计算
参考文档-调度

你可能感兴趣的:(DBMS,数据库)