- 双目立体视觉(3.1)立体标定
2501_90596733
双目立体视觉计算机视觉python人工智能
在双目测距系统中,立体标定是至关重要的一步。其主要目的是求解双目相机的所有内外参数,这些参数的准确性直接关系到后续的效果,进而影响双目测距的精度。一、立体标定的重要性立体标定的核心目标是获取相机的内外参数。内参数包括焦距、主点坐标和畸变参数等,这些参数在相机制造完成后基本固定,无需频繁标定。外参数则包括旋转矩阵R和平移向量T,用于描述相机与场景之间的相对位置关系。通过标定,我们可以消除相机的畸变,
- 人工智障的软件开发-自动流水线CI/CD篇-docker+jenkins部署之道
Yuanymoon
人工智障2077系列devopsjenkinsci/cddockerjenkinsai
指令接收:「需要自动构建系统」系统检测:目标开发一个软件已完成代码仓库-轻盈的gitea,开始添加自动流水线启动应急冷却协议:准备承受Java系应用的资源冲击核心组件锁定:构建老将军Jenkins(虽然年迈但依然能战)需求分析:论碳基生物的认知进化人类需求翻译矩阵表层需求:“写一个软件”实际需求:“写代码并自动完成测试/打包/部署的流水线,最后自动部署一个系统哟”隐藏需求:“想要偷懒又不想承认的自
- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- 计算机视觉中图像的基础认知
全栈你个大西瓜
人工智能计算机视觉人工智能图像基本属性RGB三通道彩色单通道灰度图像OpenCVMatplotlib
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络一、图像/视频的基本属性在计算机视觉中,图像和视频的本质是多维数值矩阵。图像或视频数据的一些基本属性。宽度(W)和高度(H)定义了图像的像素分辨率,单位通常是像素。例如,一张1920x1080的图像有1920列(
- 数据结构:图(存储结构:邻接矩阵,邻接表)
成分复杂选手
数据结构c++visualstudiocode
图的概念图是由两个集合V和E组成,记为G=(V,E),其中V是顶点的有穷非空集合,E是V中顶点偶对的有穷集合,这些顶点偶对称为边。图可分为有向图和无向图,有向图中顶点对是有序的,每条边都有起点和终点,称为从Vi到Vj的一条有向边;无向图的顶点对是无序的。图的存储结构图的存储结构有主要有邻接矩阵、邻接表、十字链表和邻接多重表,这里介绍邻接矩阵和邻接表两种方法。邻接矩阵表示法:邻接矩阵使用一个二维数组
- 图的存储结构:邻接矩阵和邻接表
Lee Neo
#数据结构数据结构
图graph顶点vertex弧arc弧尾tail弧头head有向图digraph边edge无向图undigraph权weight网network邻接点adjacent依附incident度degree出度OutDegree入度Indegree路径path邻接矩阵adjacencymatrix一、邻接矩阵存储(数组表示)借助矩阵(二维数组)表示元素(图的任意两个顶点)之间的关系用一维数组(顶点表)存
- SQL中char和nchar 的区别
未来无限
C#Winform设计sql数据库char和nchar的区别
char和varchar的长度都在1到8000之间,它们的区别在于char是定长字符数据,而varchar是变长字符数据。所谓定长就是长度固定的,当输入的数据长度没有达到指定的长度时将自动以英文空格在其后面填充,使长度达到相应的长度;而变长字符数据则不会以空格填充。text存储可变长度的非Unicode数据,最大长度为2^31-1(2,147,483,647)个字符。后面三种数据类型和前面的相比,
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 数据结构:利用邻接矩阵构造图及图的输出c++
Belieber53
c++数据结构算法
输入:请输入顶点数及弧数请按照(顶点,顶点,权值)格式输入各边依附的顶点及权值输出:图的结构如下,用邻接矩阵输出#include#include#include#defineINFINITYINT_MAX//最大值#defineMAX_VERTEX_NUM20//最大顶点个数#defineFALSE0#defineTRUE1#defineOK1#defineERROR-2#defineOVERFL
- 数据结构:图;邻接矩阵和邻接表
muxue178
数据结构算法
邻接矩阵:1.概念:邻接矩阵是图的存储结构之一,通过二维数组表示顶点间的连接关系。2.具体例子:一.无向图邻接矩阵示例:示例图(顶点:A、B、C,边:A-B、B-C):邻接矩阵:ABCA010B101C010特点:矩阵对称,主对角线为0(无自环边)。顶点B的度为2,对应第2行/列非零元素数量。非零元素总数=边数×2(无向图双向性)。二、有向图邻接矩阵示例示例图(顶点:V1→V2、V2→V3、V3→
- python画二维矩阵图_基于python 二维数组及画图的实例详解
weixin_39785400
python画二维矩阵图
1、二维数组取值注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型#二维数组importnumpyasnplist1=[[1.73,1.68,1.71,1.89,1.78],[54.4,59.2,63.6,88.4,68.7]]list3=[1.73,1.68,1.71,1.89,1.78]list4=[54.4,59.2,63.6,88.4,68.7]list
- vue3 关于插槽的使用
加班是不可能的,除非双倍日工资
vue3vue.js
插槽的使用最近把Vue3重新复习了一下,发现之前掌握的还不够清楚.所以这里做一下笔记以免忘记,话不多说直接上干货.关于Vue3的插槽插槽的使用,用过Vue的人都清楚,就是在需要插入的地方挖个坑,然后你把想要的内容放坑里面,坑就会根据你的内容自动填充,但是插槽也是有区别的:-插槽有好几种:-匿名插槽-具名插槽-作用域插槽-匿名作用域插槽-具名作用域插槽-条件插槽-动态插槽-暂时还是没弄明白插槽这么多
- 用esp32做一个门禁系统
m0_74183254
python
用esp32做一个门禁系统,显示时间,管理员密码,远程操控等硬件模块:ESP32开发板DS1302RTC模块(用于时间和日期)OLED显示屏(SSD1306)4x4矩阵键盘(用于密码输入)RFID读卡器(如RC522)蜂鸣器(用于报警)电磁锁或舵机控制的锁LED指示灯(绿色和红色)功能模块:RTC时间管理:通过DS1302模块获取时间和日期,并在OLED上显示。密码管理:支持10组用户密码,可修改
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 【Spring Boot】Spring Boot解决循环依赖
m0_54851477
面试学习路线阿里巴巴springbootjavaspring
目录循环依赖一、前言二、Bean的创建过程三、循环依赖检测机制3.1实例化阶段3.2属性填充阶段3.3依赖注入循环依赖一、前言环依赖是指两个或者多个bean互相依赖对方,从而形成一个闭环。例如:BeanA依赖于BeanB,而BeanB又依赖于BeanA。可能会导致Spring在尝试创建这些bean实例时出现问题,因为他们互相等待对方被创建,最终导致应用程序无法启动。Spring是如何发现这种循环依
- Python:第三方库
衍生星球
python第三方库
1.第三方Python库库名用途pip安装指令NumPy矩阵运算pipinstallnumpyMatplotlib产品级2D图形绘制pipinstallmatplotlibPIL图像处理pipinstallpillowsklearn机器学习和数据挖掘pipinstallsklearnRequestsHTTP协议访问pipinstallrequestsJieba中文分词pipinstalljieba
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- Python Pandas数据清洗之缺失数据处理
python慕遥
Pandaspythonpandas开发语言
大家好,在数据分析和处理过程中,缺失数据是常见且不可避免的现象。无论是在数据收集、传输或存储的过程中,数据集可能会出现部分丢失。缺失数据的存在不仅会影响数据的完整性,还可能对后续的数据分析和建模造成不利影响。为了保证数据质量,合理处理缺失数据至关重要。Python的Pandas库提供了强大的工具,能够高效处理数据中的缺失值,特别是通过插值和填充技术来弥补数据的缺失。本文将介绍如何使用Pandas处
- LeetCodeHot100(普通数组和矩阵篇)
IPython_J
矩阵算法leetcode
目录普通数组&矩阵最大子数组和题目代码合并区间题目代码轮转数组题目代码除自身以外数组的乘积题目代码缺失的第一个正数题目代码矩阵置零题目代码螺旋矩阵题目代码旋转图像题目代码搜索二维矩阵II题目代码后续内容持续更新~~~普通数组&矩阵最大子数组和题目给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组是数组中的一个连续部分。代码classSolu
- 关于django __str__ 与 __unicode__ 问题
weixin_40105587
python
因为所有字符串都作为Unicode字符串从数据库返回,基于字符的模型字段(CharField、TextField、URLField等)在Django从数据库检索数据时将包含Unicode值。即使数据可以放入ASCII字节字符串,也总是如此。您可以在创建模型或填充字段时传入bytestring,并且Django会在需要时将其转换为Unicode。¶选择__str__()和__unicode__()请
- 数据结构与算法面试专题——堆排序
黄雪超
技术基础算法数据结构排序算法
完全二叉树完全二叉树中如果每棵子树的最大值都在顶部就是大根堆完全二叉树中如果每棵子树的最小值都在顶部就是小根堆设计目标:完全二叉树的设计目标是高效地利用存储空间,同时便于进行层次遍历和数组存储。它的结构使得每个节点的子节点都可以通过简单的计算得到,从而实现快速的节点访问。实现原理:完全二叉树是一棵满二叉树,除了最后一层外,每一层都被完全填充。最后一层的节点都集中在左边。这种结构可以用数组来存储,其
- Matlab基础入门手册(第三章:运算符)
freexyn
matlab线性代数矩阵
目录第三章运算符1.16算术运算1.17算术常用函数1.18逻辑运算1.19关系运算1.20运算符的优先级1.21兼容性第三章运算符1.16算术运算1.算术运算(arithmetic)主要指加减乘除、幂和舍入等运算2.说明Matlab有两种不同类型的算术运算:数组运算和矩阵运算数组运算基于元素的运算,支持任意向量、矩阵和多维数组矩阵运算遵循线性代数的规则字符(.)区分矩阵运算和数组运算数组运算和矩
- 如何用AI轻松制作精美PPT,效率翻倍!
HUIPPT剑盾ai
人工智能powerpoint软件科技aigc
如何用AI轻松制作精美PPT,效率翻倍!在现代工作中,PPT几乎成了每个职场人日常必备的工具。不管是汇报、演讲,还是团队协作,PPT都在无形中占据了我们大量的时间和精力。你是否也曾为一张张空白的幻灯片发愁?是否曾因设计不当而感到力不从心?如今有了AI制作PPT这一神器,让我们告别了繁琐的手工制作流程。AI做PPT,究竟有何魅力呢?首先它能够帮你轻松生成PPT,不仅仅是填充内容,更能够为你提供精美的
- 工程计算4——线性方程组的问题敏感性
sda42342342423
math
扰动方程方程组(A+△A)x=b+△b为方程Ax=b的扰动方程△A,△b为由舍入误差所产生的扰动矩阵和扰动向量近似解与Ax=b的解x的相对误差不大称为良态方程,否则为病态方程。向量和矩阵的范数为了研究线性方程组近似解的误差估计和迭代法的收敛性,引入的对向量和矩阵的度量。向量的范数定义设XϵRn,||X||表示定义在Rn上的一个实值函数,称之为X的范数,性质非负性:即对一切X∈Rn,X≠0,||X|
- Eigen教程-sparse
sda42342342423
eigen
转载http://blog.csdn.net/xuezhisdc/article/details/54633274本文对稀疏矩阵SparseMatrix的主要操作进行了总结。首先,建议先阅读《Eigen教程2-稀疏矩阵操作》。关于稀疏矩阵,最重要的一点是:稀疏矩阵的存储方式,是按列优先储存,还是按行优先存储。绝大多数的稀疏矩阵的算术操作都会断言(判断)操作数的存储方式是否相同。稀疏矩阵初始化构造函
- numpy.float8不存在;Python中,实现16位浮点数
ZhangJiQun&MXP
教学2021论文2024大模型以及算力算法python数据结构人工智能
目录python中矩阵的浮点数存储numpy.float8不存在Python中,实现16位浮点数实现float16关于float8python中矩阵的浮点数存储在Python中,矩阵通常是通过嵌套列表(listoflists)、NumPy数组(numpy.ndarray)或其他类似的数据结构来表示的。矩阵中存储的数值所占用的位数取决于多个因素,包括数值的类型(整数、浮点数等)以及具体的数值范围。嵌
- wps js宏表格也智能起来
HuangTeacher810
wpsjs宏wpsjavascript开发语言excel自动化
我们身边有很多小工具小软件能实现我们生活工作中的一些实际需求,作为业余爱好者,很难追求高雅的代码,高深的学问,用个小聪明,也玩一玩智能化,办公自动化,来实现一些小功能。我试着用wps宏也一样实现了小小的智能化。先上代码再来说说:function身份证身份证填充表格(){Sheets("数据表").Activate();rngArr=Range('a1',Range('zz1').End(xlToL
- 第六篇:数字逻辑的“矩阵革命”——域控制器中的组合电路设计
天天爱吃肉8218
学习笔记矩阵线性代数汽车笔记
副标题:用卡诺图破解车身域控制器的逻辑迷宫,揭秘华为DriveONE的“数字特工”▍开篇:黑客帝国世界观映射>"WelcometotheRealWorld."——Morpheus>在数字逻辑的世界里,组合电路就是构建Matrix的底层代码。当新能源汽车的域控制器需要同时处理车门锁、灯光控制、热管理信号时,就像Neo同时躲避多个特工的追击——只有最优化的逻辑设计,才能让系统在纳秒级响应中游刃有余。核
- 【clickhouse踩坑记录】ClickHouse查询性能优化(入门级)
一条咸鱼的记录
踩坑记录数据库bigdata
背景用了一年多的ClickHouse,但好像都没系统地去学一遍,趁着最近有点时间,相对全面地去看了一圈ClickHouse的内容。发现ClickHouse虽然性能查询本身快,但如果使用不恰当,性能会被降一个级别。下面主要简单介绍一下,ClickHouse的查询可以从哪些方面做优化。可重点关注标题加粗部分!!优化方法以下,主要从表级别、语法、查询这三方面简要介绍。表级别优化填充有空值的字段对于一些表
- GCN推导合集
mumukehao
研究生笔记异配图深度学习
读论文,发现看论文最重要的是推导,因此写了这篇文章,记录重要的推导过程(个人人为的)(持续更新)SGC以及最常见优化的推到邻接矩阵归一化:A~=D~−1/2A~D~−1/2\tilde{A}=\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}A~=D~−1/2A~D~−1/2对应::A=In+D−1/2AD−1/2A=I_{n}+D^{-1/2}AD^{-1/2}A
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep