ubuntu14.04+caffe+cuda8.0+openpose工作环境搭建

近期要用到openpose,目前还未看到在ubuntu上配置的相关介绍,只发现了在Windows下进行配置的博客(http://blog.csdn.net/d408550969/article/details/72823605)。这里我在ubuntu下进行了编译使用,其主要部分还是为caffe的编译安装,完成caffe的编译安装后,再进行openpose编译就很简单,简要记录如下。
一、相关资源下载
caffe:https://github.com/BVLC/caffe
openpose:https://github.com/CMU-Perceptual-Computing-Lab/openpose
注意:openpose是依赖caffe编译的,首先需要搭建好caffe的工作环境。其次官方openpose是在ubuntu14和16版本上测试的,我这里使用的是ubuntu14.04.而NVIDIA显卡至少要有1.6G,可以通过nvidia-smi 命令查看。还有一些其他的硬件要求,大家可以去github的安装说明上去看(https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/installation.md)。

二、环境搭建
1、caffe环境搭建
这一块已经有了很多资料进行了介绍,我在安装时也查阅了很多博客,这里对我安装的情况简要记录。
(1)首先是安装显卡驱动。开机进入BIOS,在“启动”中禁用“Fast boot”,接着在“Advanced”=>“SA”=>“GC”中选择集成显示,将iGPU开启。
(2)启动系统,进入tty(ctr+alt+F1),登录自己的用户,首先要关掉图形窗口:

   sudo service lightdm stop 

然后开始安装显卡驱动:

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-get install nvidia-375

接下来重启系统,在BIOS中启动独立显卡:BIOS–>Adwanced–>SA—>GC–>优选设备:auto&&iGPU:关闭。
保存设置进入系统,打开终端测试:nvidia-smi,可以看到:
ubuntu14.04+caffe+cuda8.0+openpose工作环境搭建_第1张图片
表示显卡驱动已经安装好了。
(3)安装cuda
在官网下载系统对应的cuda版本,按官网介绍安装即可,注意安装完需要配置环境变量。
ubuntu14.04+caffe+cuda8.0+openpose工作环境搭建_第2张图片
(4)opencv3.0 首先安装opencv需要的依赖,然后下载源码编译即可。参见: http://blog.csdn.net/linj_m/article/details/45048905
(5)python使用的是系统自带的,需下载caffe/python/requirements.txt中包含的python工具包。
(6)cuDNN的安装比较简单,同时还需要安装caffe所依赖的一下工具包,参见:http://blog.csdn.net/zouyu1746430162/article/details/54095807
(7)最后就是编译caffe了。Makefile.config需要按照自己的系统和环境修改好,这里要用到openpose提供的Makefile。将/openpose/3rdparty/caffe/下的Makefile文件拷到caffe的根目录,替换原有的Makefile。接下来进行编译,在根目录下:

    make all -j8 && make distribute -j8

编译完成即可。
2、openpose编译
编译openpose就比较简单了,在/openpose/ubuntu/目录下,拷贝Makefile.config.Ubuntu14_cuda8.example到openpose的根目录,重命名为:Makefile.config,然后将Makefile.config中的caffe_dir改为刚刚编译的distribute目录,然后在主目录下编译即可:

make all -j8

最后就是测试了,按照github项目主页进行测试即可,效果还是很不错的。

你可能感兴趣的:(深度学习,ubuntu)