自编码器的输入节点和输出节点的数量是一致的,通常希望使用少量稀疏的高阶特征来重构输入,并非直接逐个复制输入节点(废话)。自编码器就是可以使用自身的高阶特征来编码自己,也就是提取出数据的高阶特征,用高阶特征重新组合来重构自己,相当于学习了恒等式:
去噪自编码器最常用的噪声是加性高斯噪声(Additive Gaussian Noise, AGN),算法从噪声中学习数据的特征,略去无规则的噪声,学习数据中频繁出现的模式和结构,才能在输出时复原数据。
自编码器在实际应用中不仅可以为监督训练做预训练,也可以直接进行特征提取和分析。
python 实现代码如下:
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
import input_data
# 定义 Xaiver 初始化方法
def xavier_init(fan_in, fan_out, constant=1):
low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
high = constant * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high, dtype=tf.float32)
class AdditiveGaussianNoiseAutoencoder(object):
def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(), scale=0.1):
'''
初始化函数(只有一个隐含层),如何添加多个隐含层?
:param n_input: 输入变量数
:param n_hidden: 隐含层节点数
:param transfer_function: 隐含层激活函数,默认为 softplus
:param optimizer: 优化器,默认为 Adam
:param scale: 高斯噪声系数,默认为 0.1
'''
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.scale = tf.placeholder(tf.float32)
self.training_scale = scale
network_weights = self._initialize_weights()
self.weights = network_weights
# 定义网络结构
self.x = tf.placeholder(tf.float32, [None, self.n_input])
self.hidden = self.transfer(tf.add(tf.matmul(
self.x + scale * tf.random_normal((n_input,)),
self.weights['w1']), self.weights['b1']))
self.reconstruction = tf.add(tf.matmul(self.hidden,
self.weights['w2']), self.weights['b2'])
# 损失函数
self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(
self.reconstruction, self.x), 2.0))
self.optimizer = optimizer.minimize(self.cost)
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable(xavier_init(self.n_input,
self.n_hidden))
all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden],
dtype=tf.float32))
all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden,
self.n_input], dtype=tf.float32))
all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],
dtype=tf.float32))
return all_weights
def partial_fit(self, X):
'''
用一个 batch 数据进行训练,返回当前的损失
:param X:
:return:
'''
cost, opt = self.sess.run((self.cost, self.optimizer),
feed_dict={self.x: X, self.scale: self.training_scale})
return cost
def calc_total_cost(self, X):
return self.sess.run(self.cost, feed_dict={self.x: X, self.scale: self.training_scale})
# 常用的成员函数(计算图中的子图)
def transform(self):
return self.sess.run(self.hidden, feed_dict={self.x: X, self.scale: self.training_scale})
def generate(self, hidden = None):
if hidden is None:
hidden = np.random.normal(size=self.weights["b1"])
return self.sess.run(self.reconstruction, feed_dict={self.hidden: hidden})
def reconstruct(self, X):
return self.sess.run(self.reconstruction, feed_dict={self.x: X, self.scale: self.training_scale})
def getWeights(self):
return self.sess.run(self.weights['w1'])
def getWeights(self):
return self.sess.run(self.weights['b1'])
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
def standard_scale(X_train, X_test):
preprocessor = prep.StandardScaler().fit(X_train)
X_train = preprocessor.transform(X_train)
X_test = preprocessor.transform(X_test)
return X_train, X_test
def get_random_block_from_data(data, batch_size):
start_index = np.random.randint(0, len(data) - batch_size)
return data[start_index:(start_index + batch_size)]
X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
n_samples = int(mnist.train.num_examples)
# 训练轮数(epoch)
training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784,
n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
scale=0.01)
# 训练
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(n_samples / batch_size)
for i in range(total_batch):
batch_xs = get_random_block_from_data(X_train, batch_size)
cost = autoencoder.partial_fit(batch_xs)
avg_cost += cost / n_samples * batch_size
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
print("total cost: " + str(autoencoder.calc_total_cost(X_test)))