1、limit限制调整
一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。
有一个配置属性可以开启,避免这种情况---对数据源进行抽样
set hive.limit.optimize.enable=true --- 开启对数据源进行采样的功能
set hive.limit.row.max.size --- 设置最小的采样容量
set hive.limit.optimize.limit.file --- 设置最大的采样样本数
缺点:有可能部分数据永远不会被处理到
2.JOIN优化
1). 将大表放后头
Hive假定查询中最后的一个表是大表。它会将其它表缓存起来,然后扫描最后那个表。
因此通常需要将小表放前面,或者标记哪张表是大表:/*streamtable(table_name) */
2). 使用相同的连接键
当对3个或者更多个表进行join连接时,如果每个on子句都使用相同的连接键的话,那么只会产生一个MapReduce job。
3). 尽量尽早地过滤数据
减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段。
4). 尽量原子化操作
尽量避免一个SQL包含复杂逻辑,可以使用中间表来完成复杂的逻辑
3. 本地模式
有时hive的输入数据量是非常小的。在这种情况下,为查询出发执行任务的时间消耗可能会比实际job的执行时间要多的多。对于大多数这种情况,hive可以通过本地模式在单台机器上处理所有的任务。对于小数据集,执行时间会明显被缩短
set hive.exec.mode.local.auto=true;
当一个job满足如下条件才能真正使用本地模式:
1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)
2.job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)
3.job的reduce数必须为0或者1
可用参数hive.mapred.local.mem(默认0)控制child jvm使用的最大内存数。
4.并行执行
hive会将一个查询转化为一个或多个阶段,包括:MapReduce阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。 不过,如果某些阶段不是互相依赖,是可以并行执行的。
set hive.exec.parallel=true,可以开启并发执行。
set hive.exec.parallel.thread.number=16; //同一个sql允许最大并行度,默认为8。
会比较耗系统资源。
5.strict模式
--对分区表进行查询,在where子句中没有加分区过滤的话,将禁止提交任务(默认:nonstrict)
set hive.mapred.mode=strict;
注:使用严格模式可以禁止3种类型的查询:
(1)对于分区表,不加分区字段过滤条件,不能执行
(2)对于order by语句,必须使用limit语句。
(3)限制笛卡尔积的查询(join的时候不使用on,而使用where的)。
6.调整mapper和reducer个数
Map阶段优化
map执行时间:map任务启动和初始化的时间+逻辑处理的时间。
1.通常情况下,作业会通过input的目录产生一个或者多个map任务。
主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);
2.举例:
a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数
b)假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数
即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。
3.是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。
4.是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。
针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数;
如何合并小文件,减少map数?
假设一个SQL任务:
Select count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’;
该任务的inputdir /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04
共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194个map任务。
Map总共消耗的计算资源: SLOTS_MILLIS_MAPS= 623,020
通过以下方法来在map执行前合并小文件,减少map数:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
再执行上面的语句,用了74个map任务,map消耗的计算资源: SLOTS_MILLIS_MAPS=333,500
对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。
大概解释一下,100000000表示100M,
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
这个参数表示执行前进行小文件合并,
前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块。
如何适当的增加map数?
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,
来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
Select data_desc,
count(1),
count(distinct id),
sum(case when …),
sum(case when ...),
sum(…)
from a group by data_desc
如果表a只有一个文件,大小为120M,但包含几千万的记录,
如果用1个map去完成这个任务,肯定是比较耗时的,
这种情况下,我们要考虑将这一个文件合理的拆分成多个,
这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as
select * from a
distribute by rand(123);
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。
每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,
根据实际情况,控制map数量需要遵循两个原则:使大数据量利用合适的map数;使单个map任务处理合适的数据量;
二、控制hive任务的reduce数:
1.Hive自己如何确定reduce数:
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)
即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;如:
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,
因此这句有10个reduce
2.调整reduce个数方法一:
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt; 这次有20个reduce
3.调整reduce个数方法二;
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;这次有15个reduce
4.reduce个数并不是越多越好;
同map一样,启动和初始化reduce也会消耗时间和资源;
另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,
那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题;
5.什么情况下只有一个reduce;
很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;
其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:
a)没有group by的汇总,比如把
select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
写成
select count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04';
这点非常常见,希望大家尽量改写。
b)用了Order by
c)有笛卡尔积
通常这些情况下,除了找办法来变通和避免,我暂时没有什么好的办法,
因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成;
同样的,在设置reduce个数的时候也需要考虑这两个原则:
使大数据量利用合适的reduce数;使单个reduce任务处理合适的数据量。
2 Reduce阶段优化
调整方式:
set mapred.reduce.tasks=?
set hive.exec.reducers.bytes.per.reducer = ?
一般根据输入文件的总大小,用它的estimation函数来自动计算reduce的个数:reduce个数 = InputFileSize / bytes per reducer
7.JVM重用
--用于避免小文件的场景或者task特别多的场景,这类场景大多数执行时间都很短,因为hive调起mapreduce任务,JVM的启动过程会造成很大的开销,尤其是job有成千上万个task任务时,JVM重用可以使得JVM实例在同一个job中重新使用N次
set mapred.job.reuse.jvm.num.tasks=10; --10为重用个数
8.动态分区调整
--动态分区属性:设置为true表示开启动态分区功能(默认为false)
set hive.exec.dynamic.partition=true;
--动态分区属性:设置为nonstrict,表示允许所有分区都是动态的(默认为strict)
--设置为strict,表示必须保证至少有一个分区是静态的
set hive.exec.dynamic.partition.mode=strict;
--动态分区属性:每个mapper或reducer可以创建的最大动态分区个数
set hive.exec.max.dynamic.partitions.pernode=100;
--动态分区属性:一个动态分区创建语句可以创建的最大动态分区个数
set hive.exec.max.dynamic.partitions=1000;
--动态分区属性:全局可以创建的最大文件个数
set hive.exec.max.created.files=100000;
--控制DataNode一次可以打开的文件个数
--这个参数必须设置在DataNode的$HADOOP_HOME/conf/hdfs-site.xml 文件中
dfs.datanode.max.xcievers
8192
9.推测执行
--目的:是通过加快获取单个task的结果以及进行侦测将执行慢的TaskTracker加入到黑名单的方式来提高整体的任务执行效率
(1)修改 $HADOOP_HOME/conf/mapred-site.xml 文件
mapred.map.tasks.speculative.execution
true
mapred.reduce.tasks.speculative.execution
true
(2)修改hive配置
set hive.mapred.reduce.tasks.speculative.execution=true;
10.数据倾斜
表现:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。
单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。
原因
1)、key分布不均匀
2)、业务数据本身的特性
3)、建表时考虑不周
4)、某些SQL语句本身就有数据倾斜
关键词
情形
后果
join
其中一个表较小,但是key集中
分发到某一个或几个Reduce上的数据远高于平均值
join
大表与大表,但是分桶的判断字段0值或空值过多
这些空值都由一个reduce处理,灰常慢
group by
group by 维度过小,某值的数量过多
处理某值的reduce灰常耗时
count distinct
某特殊值过多
处理此特殊值reduce耗时
解决方案:
参数调节
set hive.map.aggr=true
11. 其他参数调优
--开启CLI提示符前打印出当前所在的数据库名
set hive.cli.print.current.db=true;
--让CLI打印出字段名称
set hive.cli.print.header=true;
--设置任务名称,方便查找监控
set mapred.job.name=P_DWA_D_IA_S_USER_PROD;
--决定是否可以在 Map 端进行聚合操作
set hive.map.aggr=true;
--有数据倾斜的时候进行负载均衡
set hive.groupby.skewindata=true;
--对于简单的不需要聚合的类似SELECT
from
LIMIT n语句,不需要起MapReduce job,直接通过Fetch task获取数据
set hive.fetch.task.conversion=more;
12、小文件问题
Hive优化之小文件问题及其解决方案
小文件是如何产生的
1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增。
2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的)。
3.数据源本身就包含大量的小文件。
小文件问题的影响
1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。
2.在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。
小文件问题的解决方案
从小文件产生的途经就可以从源头上控制小文件数量,方法如下:
1.使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件。
2.减少reduce的数量(可以使用参数进行控制)。
3.少用动态分区,用时记得按distribute by分区。
对于已有的小文件,我们可以通过以下几种方案解决:
1.使用hadoop archive命令把小文件进行归档。
2.重建表,建表时减少reduce数量。
3.通过参数进行调节,设置map/reduce端的相关参数,如下:
设置map输入合并小文件的相关参数:
//每个Map最大输入大小(这个值决定了合并后文件的数量)
set mapred.max.split.size=256000000;
//一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)
set mapred.min.split.size.per.node=100000000;
//一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)
set mapred.min.split.size.per.rack=100000000;
//执行Map前进行小文件合并
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
设置map输出和reduce输出进行合并的相关参数:
//设置map端输出进行合并,默认为true
set hive.merge.mapfiles = true
//设置reduce端输出进行合并,默认为false
set hive.merge.mapredfiles = true
//设置合并文件的大小
set hive.merge.size.per.task = 256*1000*1000
//当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。
set hive.merge.smallfiles.avgsize=16000000
设置如下参数取消一些限制(HIVE 0.7后没有此限制):
set hive.merge.mapfiles=false;
默认值:true
描述:是否合并Map的输出文件,也就是把小文件合并成一个map
set hive.merge.mapredfiles=false;
默认值:false
描述:是否合并Reduce的输出文件,也就是在Map输出阶段做一次reduce操作,再输出
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
这个参数表示执行前进行小文件合并,
前面三个参数确定合并文件块的大小,大于文件块大小128m的,
按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块。
参考:
hive优化之——控制hive任务中的map数和reduce数
如何在hadoop中控制map的个数
数据分析利器之hive优化十大原则
Hive常用Job配置 & Map,Reduce数量控制
原文链接:https://www.cnblogs.com/ITtangtang/p/7683028.html
另一篇优秀博文(附):http://www.cnblogs.com/smartloli/p/4356660.html
你可能感兴趣的:(hive)
hive中2种常用的join方式
潘达斯奈基~
大数据 hive hadoop 数据仓库
在最近的项目代码review中,发现之前代码小表关联大表的业务,小表经过过滤后,数据只有400多条,而大表有1600万条,之前的逻辑是使用的是小表join大表,运行时间1小时12分钟;经过优化后,使用了mapjoin的方式,将小表放到内存中,运行时间7分钟。借此机会回顾下hive中2种常用的join方式:MapJoin、ReduceJoin(也叫CommonJoin)应对场景:MapJoin:适用
linux安装java jdk17 ng
1、下载jdk包wget--header=“Cookie:oraclelicense=accept-securebackup-cookie”https://download.oracle.com/java/17/archive/jdk-17.0.10_linux-x64_bin.tar.gz2、解压jdk包:tar-zxvfjdk-17.0.10_linux-x64_bin.tar.gz3、编辑配
flink数据同步mysql到hive_基于Canal与Flink实现数据实时增量同步(二)
背景在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(OperationalDataStore)数据。在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类。对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节。如何准确、高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量
spark处理kafka的用户行为数据写入hive
月光一族吖
spark kafka hive
在CentOS上部署Hadoop(Hadoop3.4.1)和Hive(Hive3.1.2)的详细步骤说明。这份指南面向单机安装(伪集群模式),如果需要搭建真正的多节点集群,各节点间的网络互访、SSH免密登录以及配置同步需进一步调整。注意:本指南假设你已拥有root权限或者具有sudo权限,并且系统连接Internet(用于下载安装包)。步骤中的版本号可根据实际需要进行更改。一、环境准备更新系统软件
.NET Framework 3.5 中的功能简介
benben0701
ASP.NET3.x .net windows wcf linq asp.net cryptography
.NETFramework3.5中的功能简介(1)我在前文《.NETFramework版本解析》(http://blog.csdn.net/johnsuna/archive/2008/03/23/2208684.aspx)中提到:.NETFramework3.5=.NETFramework3.0+.NETFramework3.0SP1.NETFramework3.0=.NETFramework2.
ubuntu FreeRadius服务器安装
flowHEHE
ubuntu系统安装 ubuntu 服务器
1、获取安装源(1)wgethttps://github.com/FreeRADIUS/freeradius-server/archive/v3.0.x.zip(2)unzipv3.0.x.zip(3)cdfreeradius-server-3.0.x/2、创建ubuntu相关依赖(1)sudoapt-getinstalldevscriptsquiltdebhelperfakerootequivs
Hbase和关系型数据库、HDFS、Hive的区别
别这么骄傲
hive hbase 数据库
目录1.Hbase和关系型数据库的区别2.Hbase和HDFS的区别3.Hbase和Hive的区别1.Hbase和关系型数据库的区别关系型数据库Hbase存储适合结构化数据,单机存储适合结构化和半结构数据的松散数据,分布式存储功能(1)支持ACID(2)支持join(3)使用主键PK(4)数据类型:int、varchar等(1)仅支持单行事务(2)不支持join,把数据糅合到一张大表(3)行键ro
大数据基础知识-Hadoop、HBase、Hive一篇搞定
原来是猪猪呀
hadoop 大数据 分布式
HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构,其核心设计包括分布式文件系统(HDFS)和MapReduce编程模型;Hadoop是一个开源的分布式计算框架,旨在帮助用户在不了解分布式底层细节的情况下,开发分布式程序。它通过利用集群的力量,提供高速运算和存储能力,特别适合处理超大数据集的应用程序。Hadoop生态圈Hadoop生态圈是一个由多个基于Hadoop开发的相
Hadoop、HDFS、Hive、Hbase区别及联系
静心观复
大数据 hadoop hdfs hive
Hadoop、HDFS、Hive和HBase是大数据生态系统中的关键组件,它们都是由Apache软件基金会管理的开源项目。下面将深入解析它们之间的区别和联系。HadoopHadoop是一个开源的分布式计算框架,它允许用户在普通硬件上构建可靠、可伸缩的分布式系统。Hadoop通常指的是整个生态系统,包括HadoopCommon(共享库和工具)、HadoopDistributedFileSystem(
Python 进攻性渗透测试(一)
原文:annas-archive.org/md5/dccde1d96c9ad81f97529d78e3e69c9b译者:飞龙协议:CCBY-NC-SA4.0序言Python是一种易学的跨平台编程语言,具有无限的第三方库。许多开源黑客工具都是用Python编写的,可以轻松地集成到你的脚本中。本书被分成了清晰的小部分,你可以按照自己的节奏学习,并专注于对你最有兴趣的领域。你将学会如何编写自己的脚本,并
Python 进攻性渗透测试(二)
原文:annas-archive.org/md5/dccde1d96c9ad81f97529d78e3e69c9b译者:飞龙协议:CCBY-NC-SA4.0第四章:追捕我吧!在今天的世界里,绕过和劫持软件在互联网上到处都是。然而,明确的使用和执行方式才是让你成为一名优秀的业余黑客的关键。这可以通过正确选择工具并遵循必要的过程,完美地完成手头的任务来实现。在本章中,我们将涵盖以下主题,帮助你实现这一
大数据面试题之Hive(1)
小的~~
大数据 大数据 hive hadoop
说下为什么要使用Hive?Hive的优缺点?Hive的作用是什么?说下Hive是什么?跟数据仓库区别?Hive架构Hive内部表和外部表的区别?为什么内部表的删除,就会将数据全部删除,而外部表只删除表结构?为什么用外部表更好?Hive建表语句?创建表时使用什么分隔符?Hive删除语句外部表删除的是什么?Hive数据倾斜以及解决方案Hive如果不用参数调优,在map和reduce端应该做什么Hive
centos使用wget下载jdk8
任意放逐
centos java linux
首先官网找需要的的jdk版本https://www.oracle.com/java/technologies/javase/javase8u211-later-archive-downloads.html我这里选择的是弹出下载提示框:勾选点Downloadjdk…这里需要使用一个账号登录,可以自行在网上搜一个账号,我就不给了。然后退回原来的页面下载,用一个能看到下载链接的软件下载,我使用的是idm
Qt Creator 11.0创建ROS2 Humble工程
余加木
ROS2 Qt qt 开发语言
QtCreator11.0创建ROS2Humble项目工程安装ROSProjectManager插件创建ROS2项目在src下添加packagegitcloneROS2功能包编译运行安装ROSProjectManager插件安装ROSProjectManager的主要流程参考官方的流程,地址(ros_qtc_plugin)。此处采用二进制安装:sudoaptinstalllibarchive-to
ORACLE 正确删除归档日志的方法
俗尘某某
程序员记录 oracle 归档日志
ORACLE正确删除归档日志的方法我们都知道在controlfile中记录着每一个archivelog文件的相关信息,当然们在OS下把这些物理文件delete掉后,在我们的controlfile中仍然记录着这些archivelog文件的相关信息,在oracle的OEM管理器中有可视化的日志展现出,当我们手工清除archive目录下的文件后,这些记录并没有被我们从controlfile中清除掉,也就
Java web开发常见中间件多版本下载备用
却诚Salong
安装问题和解决方法 java 中间件 开发语言
备注:每次换电脑都要重新构建一下环境,下载找资源很麻烦,官网英文网页找个历史版本看不懂,还要慢慢去搜,所以直接整理一波,需要的自行收藏。1.nodejs自选版本下载:地址:https://nodejs.org/download/release/网速快,自选任何版本下载。2.maven自选版本下载:地址:https://archive.apache.org/dist/maven/maven-3/网速
GUI框架:谈谈框架
baozi3026
框架 command mfc button class string
转帖请注明出处http://www.cppblog.com/cexer/archive/2009/11/15/100988.html1开篇废话我喜欢用C++写GUI框架,因为那种成就感是实实在在地能看到的。从毕业到现在写了好多个了,都是实验性质的。什么拳脚飞刀毒暗器,激光核能反物质,不论是旁门左道的阴暗伎俩,还是名门正派的高明手段,只要是C++里有的技术都试过了。这当中接触过很多底层或是高级的技术
2024年Python最新统信UOS_麒麟KYLINOS上安装特定版本python_统信uos安装python
2401_84558914
程序员 python linux 服务器
准备解压…/16-libidn2-dev_2.0.5.1-1+dde_amd64.deb…正在解压libidn2-dev:amd64(2.0.5.1-1+dde)…/var/cache/apt/archives/libidn2-dev_2.0.5.1-1+dde_amd64.deb正在选中未选择的软件包libp11-kit-dev:amd64。准备解压…/17-libp11-kit-dev_0.2
鲲鹏CPU+麒麟操作系统arm环境安装MySQL
运维小乔
mysql 数据库
系统环境背景:CPU:鲲鹏920操作系统:Ky10SP3MySQL版本:8.4.2一、下载MySQL官网地址:https://downloads.mysql.com/archives/community/二:MySQL安装前准备2.1关闭防火墙[root@ky-b~]#systemctlstopfirewalld[root@ky-b~]#systemctldisablefirewalldRemov
如何在Ubuntu上运行Jar包?
wljslmz
Linux技术 ubuntu jar linux
Java,一种广泛使用的面向对象编程语言,以其“编写一次,到处运行”的理念著称,是跨平台应用程序开发的首选。其核心优势在于Java虚拟机(JVM),它使得编写的Java代码能够在任何安装了JVM的设备上运行,无需重新编译。Ubuntu作为Linux发行版中的佼佼者,凭借其开源、稳定、易用的特性,成为了众多开发者部署Java应用的优选平台。Jar(JavaArchive)文件是一种归档文件格式,用于
织梦DedeCMS转WordPress
asqq8
最近,有个用户找模板兔迁移网站,源站用的dede,需要转成wp,文章数量大概7000-8000篇,其中有个需求是保证旧文章的链接有效,在wp上的新文章与旧文章的链接类型不一样,所以这涉及到伪静态来处理跳转。虽然网上都很多教程,但是在这次导入过程中还是遇到过一些问题。以下教程是dede的数据表得与wp的数据表在同一个数据库下!要是不在,可以将dede_archives先导入到wp的数据库里。一般流程
拥抱Linux Mint,安装迅雷和微信
zhqh100
linux 运维 服务器
迅雷的下载地址http://archive.kylinos.cn/kylin/partner/pool/com.xunlei.download_1.0.0.1_amd64.debLinuxMint自带的Transmission今天下载速度还可以,几兆的速度,挺满意的微信的下载地址https://linux.weixin.qq.com/搜狗拼音输入法虽然有官网,但官网最后说是支持Ubuntu20.0
使用datax进行mysql的表恢复
是桃萌萌鸭~
mysql 数据库
DataXDataX是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括MySQL、SQLServer、Oracle、PostgreSQL、HDFS、Hive、HBase、OTS、ODPS等各种异构数据源之间高效的数据同步功能。FeaturesDataX本身作为数据同步框架,将不同数据源的同步抽象为从源头数据源读取数据的Reader插件,以及向目标端写入数据的Writer插件,理论上Dat
spark写入hive表问题
qq_42265026
spark hive 大数据
1、httpclient发送post请求,当返回的数据过大时,报错socketclosed这个原因是客户端主动将连接关闭,根本原因是将httpclient。execute的返回结果closeableResponse作为a方法的返回结果,在b方法中进行解析虽然在b方法中没有关闭closeableResponse,但是在a方法中返回closeableResponse后,会进行httppost.real
spark解析压缩包数据,写入到hive表中
dbbigdata
spark 大数据 hive
spark解析xxxxx.tar.gz形式的压缩包。压缩包里面是一个个的json文件或者zip的文件,zip里面是json文件。先用spark读取tar.gz的路径,然后开流传给newTarArchiveInputStream(newGZIPInputStream(file))去处理,大概的代码如下defmain(args:Array[String]):Unit={valroot:String=a
phpexcel 读取数据
http://extjs.org.cn/fatjames/archives/379require_once'/home/PHPExcel_1.8.0/PHPExcel/IOFactory.php';$reader=PHPExcel_IOFactory::createReader('Excel2007');//设置以Excel5格式(Excel97-2003工作簿)$PHPExcel=$reader
三七互娱GO面经及参考答案
大模型大数据攻城狮
golang epoll B树原理 幻读 go面试 go面经 mysql性能
MySQL有哪些存储引擎?MyISAM如何存储数字类型数据?MySQL拥有多种存储引擎,每种都有其独特的特性和适用场景。常见的存储引擎包括InnoDB、MyISAM、Memory、CSV、Archive、Federated等。InnoDB是MySQL5.5版本之后的默认存储引擎,它支持事务、外键、行级锁和崩溃恢复功能,适合处理高并发事务型应用。MyISAM是早期MySQL的默认存储引擎,不支持事务
统信UOS(Linux)安装nvm node管理工具
高高i
linux 运维 服务器 UOS 统信 nvm安装
整篇看完再操作,有坑!!官网nvm官网按照官网方式安装,一直报错经过不断研究,正确步骤如下1、下载安装包可能因为网络安全不能访问github,我是链接热点下载的wgethttps://github.com/nvm-sh/nvm/archive/refs/tags/v0.39.1.tar.gz2、解压可能报mkdir无权限,所以需要使用sudo执行解压命令,可能报找不到文件【v0.39.1.tar.
cydia软件路径_在Cydia中提取Deb格式安装包文件
大家都知道越狱后可以安装deb格式的文件包了,并且我们经常看到一些大神在论坛分享一些deb格式的文件或插件,他们是如何提取出来的呢?本文就给大家介绍一下在Cydia中提取Deb格式安装包文件教程。Cydia下载的deb文件在哪,怎么提取出来?cydia下载的deb在/private/var/cache/apt/archives目录下,提取方式:1、用cydia安装软件后,系统提示“重新启动设备”或
Spark教程3:SparkSQL最全介绍
Cachel wood
大数据开发 spark 大数据 分布式 计算机网络 AHP 需求分析
文章目录SparkSQL最全介绍一、SparkSQL概述二、SparkSession:入口点三、DataFrame基础操作四、SQL查询五、SparkSQL函数六、与Hive集成七、数据源操作八、DataFrame与RDD互转九、高级特性十、性能优化十一、Catalyst优化器十二、SparkSQL应用场景十三、常见问题与解决方法SparkSQL最全介绍一、SparkSQL概述SparkSQL是A
LeetCode[Math] - #66 Plus One
Cwind
java LeetCode 题解 Algorithm Math
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
JQuery中$.ajax()方法参数详解
AILIKES
JavaScript jsonp jquery Ajax json
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVM JConsole Webphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java “\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScript array prototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
UIWebView实现https双向认证请求
bewithme
UIWebView https Objective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis 数据库 NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
各数据库分页sql备忘
bingyingao
oracle sql 分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
Saiku去掉登录模块
daizj
saiku 登录 olap BI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
浅析 Flex中的Focus
dsjt
html Flex Flash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式 volatile 乱序执行 双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
程序员从初级到高级的蜕变
gcq511120594
框架 工作 PHP android html5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo 商业与市场 IT资源 免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不