整个集群的节点分为以下三种主要类型
Master nodes -- 负责维护集群状态,不保存index数据, 硬件要求: 一般性的机器就可以,给es进程分配16g内存 Data Nodes -- 只保存index的数据,不被选举为Master nodes 硬件要求: 配置要求越高越好,使用大硬盘,有条件可以上SSD硬盘 Client Nodes -- 主要用于负载均衡,不被选举为Master node, 也不保存index数据 硬件要求: 24核CPU, 64G内存或更高
kopf
./elasticsearch/bin/plugin install lmenezes/elasticsearch-kopf/{branch|version}
node.master: false
node.data: false
discovery.zen.ping.unicast.hosts: ["master1","master2","master3"]
network.host: ${HOSTNAME}
sudo service elasticsearch start
需要注意的是elasticsearch在centos中使用service elasticsearch restart有时不能达到效果,需要分开来做
sudo kill -9 `pgrep -f elasticsearch`
sudo service elasticsearch start
为了记录针对集群的查询内容,建议使用nginx来做反向代理,nginx安装在client node上,conf.d/default.conf 最简单的配置如下
upstream elasticsearch {
server 127.0.0.1:9200;
}
server {
gzip on;
access_log /var/log/nginx/access.log combined;
listen 80 default_server;
server_name _;
#charset koi8-r;
#access_log logs/host.access.log main;
# Load configuration files for the default server block.
include /etc/nginx/default.d/*.conf;
location / {
root /usr/share/nginx/html;
index index.html index.htm;
proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_pass http://elasticsearch;
}
error_page 404 /404.html;
location = /404.html {
root /usr/share/nginx/html;
}
# redirect server error pages to the static page /50x.html
error_page 500 502 503 504 /50x.html;
location = /50x.html {
root /usr/share/nginx/html;
}
}
建议安装如下插件
node.master: false
node.data: true
discovery.zen.ping.unicast.hosts: ["master1","master2","master3"]
network.host: ${HOSTNAME}
如果为elasticsearch配置了多块硬盘,可以修改 DATA_DIR 的值,多个目录使用逗号(,)分开
node.master: true
node.data: false
discovery.zen.ping.unicast.hosts: ["master1","master2","master3"]
network.host: ${HOSTNAME}
一个合理的集群应该包含三个master nodes, 1到多个data nodes, 最少一个client node
通用配置,以centos为例,使用rpm安装包
sudo rpm -ivh elasticsearch-version.rpm
sudo chkconfig --add elasticsearch
修改/etc/sysconfig/elasticsearch, 修改ES_HEAP_SIZE和JAVA_OPTS的内容,注意elasticsearch建议使用的最大内存是32G,
ES_HEAP_SIZE=32g
JAVA_OPTS="-Xms32g"
修改/etc/security/limits.conf, 添加如下内容
* hard memlock unlimited
* soft memlock unlimited
/etc/elasticsearch/elasticsearch.yml 内容配置
Linux中,每个进程默认打开的最大文件句柄数是1000,对于服务器进程来说,显然太小,通过修改/etc/security/limits.conf来增大打开最大句柄数
* - nofile 65535
max_map_count定义了进程能拥有的最多内存区域
sysctl -w vm.max_map_count=262144
修改/etc/elasticsearch/elasticsearch.yml
bootstrap.mlockall: true
修改/etc/security/limits.conf, 在limits.conf中添加如下内容
* soft memlock unlimited
* hard memlock unlimited
memlock 最大锁定内存地址空间, 要使limits.conf文件配置生效,必须要确保pam_limits.so文件被加入到启动文件中。
确保/etc/pam.d/login文件中有如下内容
session required /lib/security/pam_limits.so
验证是否生效
curl localhost:9200/_nodes/stats/process?pretty
vm.dirty_background_ratio 这个参数指定了当文件系统缓存脏页数量达到系统内存百分之多少时(如5%)就会触发pdflush/flush/kdmflush等后台回写进程运行,将一定缓存的脏页异步地刷入外存;
vm.dirty_ratio
该参数则指定了当文件系统缓存脏页数量达到系统内存百分之多少时(如10%),系统不得不开始处理缓存脏页(因为此时脏页数量已经比较多,为了避免数据丢失需要将一定脏页刷入外存);在此过程中很多应用进程可能会因为系统转而处理文件IO而阻塞。
把该参数适当调小,原理通(1)类似。如果cached的脏数据所占比例(这里是占MemTotal的比例)超过这个设置,系统会停止所有的应用层的IO写操作,等待刷完数据后恢复IO。所以万一触发了系统的这个操作,对于用户来说影响非常大的。
sysctl -w vm.dirty_ratio=10
sysctl -w vm.dirty_background_ratio=5
为了将设置永久保存,将上述配置项写入/etc/sysctl.conf文件中
vm.dirty_ratio = 10
vm.dirty_background_ratio = 5
swap空间是一块磁盘空间,操作系统使用这块空间保存从内存中换出的操作系统不常用page数据,这样可以分配出更多的内存做page cache。这样通常会提升系统的吞吐量和IO性能,但同样会产生很多问题。页面频繁换入换出会产生IO读写、操作系统中断,这些都很影响系统的性能。这个值越大操作系统就会更加积极的使用swap空间。
调节swappniess方法如下
sudo sh -c 'echo "0">/proc/sys/vm/swappiness'
如果集群中使用的是SSD磁盘,那么可以将默认的io sched由cfq设置为noop
sudo sh -c 'echo "noop">/sys/block/sda/queue/scheduler'
在/etc/sysconfig/elasticsearch中设置最大堆内存,该值不应超过32G
ES_HEAP_SIZE=32g
ES_JAVA_OPTS="-Xms32g"
MAX_LOCKED_MEMORY=unlimited
MAX_OPEN_FILES=65535
以创建demo_logs模板为例,说明可以调优的参数及其数值设定原因。
PUT _template/demo_logs
{
"order": 6,
"template": "demo-*",
"settings": {
"index.merge.policy.segments_per_tier": "25",
"index.mapping._source.compress": "true",
"index.mapping._all.enabled": "false",
"index.warmer.enabled": "false",
"index.merge.policy.min_merge_size": "10mb",
"index.refresh_interval": "60s",
"index.number_of_shards": "7",
"index.translog.durability": "async",
"index.store.type": "mmapfs",
"index.merge.policy.floor_segment": "100mb",
"index.merge.scheduler.max_thread_count": "1",
"index.translog.translog.flush_threshold_size": "1g",
"index.merge.policy.merge_factor": "15",
"index.translog.translog.flush_threshold_period": "100m",
"index.translog.sync_interval": "5s",
"index.number_of_replicas": "1",
"index.indices.store.throttle.max_bytes_per_sec": "50mb",
"index.routing.allocation.total_shards_per_node": "2",
"index.translog.flush_threshold_ops": "1000000"
},
"mappings": {
"_default_": {
"dynamic_templates": [
{
"string_template": {
"mapping": {
"index": "not_analyzed",
"ignore_above": "10915",
"type": "string"
},
"match_mapping_type": "string"
}
},
{
"level_fields": {
"mapping": {
"index": "no",
"type": "string"
},
"match": "Level*Exception*"
}
}
]
}
}
"aliases": {}
}
为了让创建的es index在每台datanode上均匀分布,同一个datanode上同一个index的shard数目不应超过3个。
计算公式: (number_of_shard * (1+number_of_replicas)) < 3*number_of_datanodes
每台机器上分配的shard数目
"index.routing.allocation.total_shards_per_node": "2",
默认的刷新时间间隔是1s,对于写入量很大的场景,这样的配置会导致写入吞吐量很低,适当提高刷新间隔,可以提升写入量,代价就是让新写入的数据在60s之后可以被搜索,新数据可见的及时性有所下降。
"index.refresh_interval": "60s"
降低数据flush到磁盘的频率。如果对数据丢失有一定的容忍,可以打开async模式。
"index.translog.flush_threshold_ops": "1000000",
"index.translog.durability": "async",
"index.merge.policy.floor_segment": "100mb",
"index.merge.scheduler.max_thread_count": "1",
"index.merge.policy.min_merge_size": "10mb"
对于不参与搜索的字段(fields), 将其index方法设置为no, 如果对分词没有需求,对参与搜索的字段,其index方法设置为not_analyzed
多使用dynamic_template
{
"persistent": {
"cluster": {
"routing": {
"allocation": {
"enable": "new_primaries",
"cluster_concurrent_rebalance": "8",
"allow_rebalance": "indices_primaries_active",
"node_concurrent_recoveries": "8"
}
}
},
"indices": {
"breaker": {
"fielddata": {
"limit": "30%"
},
"request": {
"limit": "30%"
}
},
"recovery": {
"concurrent_streams": "10",
"max_bytes_per_sec": "200mb"
}
}
},
"transient": {
"indices": {
"store": {
"throttle": {
"type": "merge",
"max_bytes_per_sec": "50mb"
}
},
"recovery": {
"concurrent_streams": "8"
}
},
"threadpool": {
"bulk": {
"type": "fixed"
"queue_size": "1000",
"size": "30"
},
"index": {
"type": "fixed",
"queue_size": "1200",
"size": "30"
}
},
"cluster": {
"routing": {
"allocation": {
"enable": "all",
"cluster_concurrent_rebalance": "8",
"node_concurrent_recoveries": "15"
}
}
}
}
}
避免shard的频繁rebalance,将allocation的类型设置为new_primaries, 将默认并行rebalance由2设置为更大的一些的值
避免每次更新mapping, 针对2.x以下的版本
"indices.cluster.send_refresh_mapping": false
调整threadpool, size不要超过core数目,否则线程之间的context switching会消耗掉大量的cpu时间,导致load过高。 如果没有把握,那就不要去调整。
为避免fields data占用大量的jvm内存,可以通过定期清理的方式来释放缓存的数据。释放的内容包括field data, filter cache, query cache
curl -XPOST "localhost:9200/_cache/clear"
写入量稳定在30K/s