RunLoop 是 iOS 和 OSX 开发中非常基础的一个概念,这篇文章将从 CFRunLoop 的源码入手,介绍 RunLoop 的概念以及底层实现原理。之后会介绍一下在 iOS 中,苹果是如何利用 RunLoop 实现自动释放池、延迟回调、触摸事件、屏幕刷新等功能的。
- [RunLoop 的概念]
- [RunLoop 与线程的关系]
- [RunLoop 对外的接口]
- [RunLoop 的 Mode]
- [RunLoop 的内部逻辑]
- [RunLoop 的底层实现]
- [苹果用RunLoop 实现的功能]
- [AutoreleasePool]
- [事件响应]
- [手势识别]
- [界面更新]
- [定时器]
- [PerformSelecter]
- [RunLoop 的实际应用举例]
RunLoop 的概念
个人理解就是程序一启动能够保持程序一只运行的状态,而不是在一个短暂的时间内就挂掉了,在这个过程中可以响应各种事件,通熟理解就是需要做事情的时候你他妈就给我做事,不需要做事的时候,你就在那静静地候着,一旦有事就立马开干,干完即退,节省cpu资源。
所以,RunLoop 实际上就是一个对象,这个对象管理了其需要处理的事件和消息,并提供了一个入口函数来执行 Event Loop 的逻辑。线程执行了这个函数后,就会一直处于这个函数内部 "接受消息->等待->处理" 的循环中,直到这个循环结束(比如传入 quit 的消息),函数返回。
OSX/iOS 系统中,提供了两个这样的对象:NSRunLoop 和 CFRunLoopRef。CFRunLoopRef 是在 CoreFoundation 框架内的,它提供了纯 C 函数的 API,所有这些 API 都是线程安全的。NSRunLoop 是基于 CFRunLoopRef 的封装,提供了面向对象的 API,但是这些 API 不是线程安全的。
CFRunLoopRef 的代码是开源的,你可以在这里 http://opensource.apple.com/tarballs/CF/ 下载到整个 CoreFoundation 的源码来查看。
我们一只想见的runloop 就张这个样子:
struct __CFRunLoop {
CFRuntimeBase _base;
pthread_mutex_t _lock; /* locked for accessing mode list */
__CFPort _wakeUpPort; // used for CFRunLoopWakeUp
Boolean _unused;
volatile _per_run_data *_perRunData; // reset for runs of the run loop
pthread_t _pthread;
uint32_t _winthread;
CFMutableSetRef _commonModes;
CFMutableSetRef _commonModeItems;
CFRunLoopModeRef _currentMode;
CFMutableSetRef _modes;
struct _block_item *_blocks_head;
struct _block_item *_blocks_tail;
CFTypeRef _counterpart;
};
可以看出 runloop 中包括了一个保证线程安全的 lock ,用于唤醒runloop 的port ,线程对象 _pthread,模式集合 _modes,以及一些其他的属性。
RunLoop 与线程的关系
苹果不允许直接创建 RunLoop,它只提供了两个自动获取的函数:CFRunLoopGetMain() 和 CFRunLoopGetCurrent()。 这两个函数内部的逻辑大概是下面这样:
//获取主线程的runloop对象
CFRunLoopRef CFRunLoopGetMain(void) {
CHECK_FOR_FORK();
static CFRunLoopRef __main = NULL; // no retain needed
if (!__main) __main = _CFRunLoopGet0(pthread_main_thread_np()); //传入主线程
return __main;
}
//获取当前线程的runloop对象
CFRunLoopRef CFRunLoopGetCurrent(void) {
CHECK_FOR_FORK();
CFRunLoopRef rl = (CFRunLoopRef)_CFGetTSD(__CFTSDKeyRunLoop);
if (rl) return rl;
return _CFRunLoopGet0(pthread_self());//传入当前线程
}
获取runloop函数:
/// 全局的Dictionary,key 是 pthread_t, value 是 CFRunLoopRef
static CFMutableDictionaryRef __CFRunLoops = NULL;
/// 访问 loopsDic 时的锁
static CFSpinLock_t loopsLock = CFSpinLockInit;
/// 获取一个 pthread 对应的 RunLoop。
CF_EXPORT CFRunLoopRef _CFRunLoopGet0(pthread_t t) {
//如果线程为空就创建创建一个main
if (pthread_equal(t, kNilPthreadT)) {
t = pthread_main_thread_np();
}
__CFSpinLock(&loopsLock);
if (!__CFRunLoops) {
__CFSpinUnlock(&loopsLock);
// 第一次进入时,初始化全局Dic,并先为主线程创建一个 RunLoop。
CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorSystemDefault, 0, NULL, &kCFTypeDictionaryValueCallBacks);
CFRunLoopRef mainLoop = __CFRunLoopCreate(pthread_main_thread_np());
CFDictionarySetValue(dict, pthreadPointer(pthread_main_thread_np()), mainLoop);
if (!OSAtomicCompareAndSwapPtrBarrier(NULL, dict, (void * volatile *)&__CFRunLoops)) {
CFRelease(dict);
}
CFRelease(mainLoop);
__CFSpinLock(&loopsLock);
}
/// 直接从 Dictionary 里获取。
CFRunLoopRef loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
__CFSpinUnlock(&loopsLock);
if (!loop) {
/// 取不到时,创建一个
CFRunLoopRef newLoop = __CFRunLoopCreate(t);
__CFSpinLock(&loopsLock);
loop = (CFRunLoopRef)CFDictionaryGetValue(__CFRunLoops, pthreadPointer(t));
// 多次判断
if (!loop) {
//存入字典中
CFDictionarySetValue(__CFRunLoops, pthreadPointer(t), newLoop);
loop = newLoop;
}
//不要在循环中释放运行循环,因为CFRunLoopDeallocate可能最终会占用它
__CFSpinUnlock(&loopsLock);
CFRelease(newLoop);
}
if (pthread_equal(t, pthread_self())) {
_CFSetTSD(__CFTSDKeyRunLoop, (void *)loop, NULL);
if (0 == _CFGetTSD(__CFTSDKeyRunLoopCntr)) {
/// 注册一个回调,当线程销毁时,顺便也销毁其对应的 RunLoop。
_CFSetTSD(__CFTSDKeyRunLoopCntr, (void *)(PTHREAD_DESTRUCTOR_ITERATIONS-1), (void (*)(void *))__CFFinalizeRunLoop);
}
}
return loop;
}
从上面的代码可以看出,线程和 RunLoop 之间是一一对应的,其关系是保存在一个全局的 Dictionary 里。线程刚创建时并没有 RunLoop,如果你不主动获取,那它一直都不会有。RunLoop 的创建是发生在第一次获取时,RunLoop 的销毁是发生在线程结束时。你只能在一个线程的内部获取其 RunLoop(主线程除外)。
看下Foundation 层 的NSRunloop都有哪些操作:
/* NSRunLoop.h
Copyright (c) 1994-2016, Apple Inc. All rights reserved.
*/
#import
#import
#import
@class NSTimer, NSPort, NSArray, NSString;
NS_ASSUME_NONNULL_BEGIN
FOUNDATION_EXPORT NSRunLoopMode const NSDefaultRunLoopMode;
FOUNDATION_EXPORT NSRunLoopMode const NSRunLoopCommonModes NS_AVAILABLE(10_5, 2_0);
@interface NSRunLoop : NSObject {
@private
id _rl;
id _dperf;
id _perft;
id _info;
id _ports;
void *_reserved[6];
}
#if FOUNDATION_SWIFT_SDK_EPOCH_AT_LEAST(8)
@property (class, readonly, strong) NSRunLoop *currentRunLoop;
@property (class, readonly, strong) NSRunLoop *mainRunLoop NS_AVAILABLE(10_5, 2_0);
#endif
@property (nullable, readonly, copy) NSRunLoopMode currentMode;
- (CFRunLoopRef)getCFRunLoop CF_RETURNS_NOT_RETAINED;
- (void)addTimer:(NSTimer *)timer forMode:(NSRunLoopMode)mode;
- (void)addPort:(NSPort *)aPort forMode:(NSRunLoopMode)mode;
- (void)removePort:(NSPort *)aPort forMode:(NSRunLoopMode)mode;
- (nullable NSDate *)limitDateForMode:(NSRunLoopMode)mode;
- (void)acceptInputForMode:(NSRunLoopMode)mode beforeDate:(NSDate *)limitDate;
@end
@interface NSRunLoop (NSRunLoopConveniences)
- (void)run;
- (void)runUntilDate:(NSDate *)limitDate;
- (BOOL)runMode:(NSRunLoopMode)mode beforeDate:(NSDate *)limitDate;
#if (TARGET_OS_MAC && !(TARGET_OS_EMBEDDED || TARGET_OS_IPHONE))
- (void)configureAsServer NS_DEPRECATED(10_0, 10_5, 2_0, 2_0);
#endif
/// Schedules the execution of a block on the target run loop in given modes.
/// - parameter: modes An array of input modes for which the block may be executed.
/// - parameter: block The block to execute
- (void)performInModes:(NSArray *)modes block:(void (^)(void))block API_AVAILABLE(macosx(10.12), ios(10.0), watchos(3.0), tvos(10.0));
/// Schedules the execution of a block on the target run loop.
/// - parameter: block The block to execute
- (void)performBlock:(void (^)(void))block API_AVAILABLE(macosx(10.12), ios(10.0), watchos(3.0), tvos(10.0));
@end
/**************** Delayed perform ******************/
@interface NSObject (NSDelayedPerforming)
- (void)performSelector:(SEL)aSelector withObject:(nullable id)anArgument afterDelay:(NSTimeInterval)delay inModes:(NSArray *)modes;
- (void)performSelector:(SEL)aSelector withObject:(nullable id)anArgument afterDelay:(NSTimeInterval)delay;
+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget selector:(SEL)aSelector object:(nullable id)anArgument;
+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget;
@end
@interface NSRunLoop (NSOrderedPerform)
- (void)performSelector:(SEL)aSelector target:(id)target argument:(nullable id)arg order:(NSUInteger)order modes:(NSArray *)modes;
- (void)cancelPerformSelector:(SEL)aSelector target:(id)target argument:(nullable id)arg;
- (void)cancelPerformSelectorsWithTarget:(id)target;
@end
NS_ASSUME_NONNULL_END
RunLoop 对外的接口
在 CoreFoundation 里面关于 RunLoop 有5个类:
typedef struct __CFRunLoop * CFRunLoopRef;
typedef struct __CFRunLoopSource * CFRunLoopSourceRef;
typedef struct __CFRunLoopObserver * CFRunLoopObserverRef;
typedef struct CF_BRIDGED_MUTABLE_TYPE(NSTimer) __CFRunLoopTimer * CFRunLoopTimerRef;
其中 CFRunLoopModeRef 类并没有对外暴露,只是通过 CFRunLoopRef 的接口进行了封装。他们的关系如下:
一个 RunLoop 包含若干个 Mode,每个 Mode 又包含若干个 Source/Timer/Observer。每次调用 RunLoop 的主函数时,只能指定其中一个 Mode,这个Mode被称作 CurrentMode。如果需要切换 Mode,只能退出 Loop,再重新指定一个 Mode 进入。这样做主要是为了分隔开不同组的 Source/Timer/Observer,让其互不影响。
CFRunLoopSourceRef 是事件产生的地方。Source有两个版本:Source0 和 Source1。
• Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用 CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,然后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。
• Source1 包含了一个 mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种 Source 能主动唤醒 RunLoop 的线程,其原理在下面会讲到。CFRunLoopTimerRef 是基于时间的触发器,它和 NSTimer 是toll-free bridged 的,可以混用。其包含一个时间长度和一个回调(函数指针)。当其加入到 RunLoop 时,RunLoop会注册对应的时间点,当时间点到时,RunLoop会被唤醒以执行那个回调。
CFRunLoopObserverRef 是观察者,每个 Observer 都包含了一个回调(函数指针),当 RunLoop 的状态发生变化时,观察者就能通过回调接受到这个变化。可以观测的时间点有以下几个:
/* runloop 观察状态的变化 */
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0),// 即将进入Loop
kCFRunLoopBeforeTimers = (1UL << 1),// 即将处理 Timer
kCFRunLoopBeforeSources = (1UL << 2),// 即将处理 Source
kCFRunLoopBeforeWaiting = (1UL << 5),// 即将进入休眠
kCFRunLoopAfterWaiting = (1UL << 6),// 刚从休眠中唤醒
kCFRunLoopExit = (1UL << 7),// 即将退出Loop
kCFRunLoopAllActivities = 0x0FFFFFFFU
};
RunLoop 的 Mode
CFRunLoopMode 的内部结构如下:
typedef struct __CFRunLoopMode *CFRunLoopModeRef;
struct __CFRunLoopMode {
CFRuntimeBase _base;
pthread_mutex_t _lock; /* must have the run loop locked before locking this */
CFStringRef _name; //当前模式的名字如:CFRunLoopDefaultMode
Boolean _stopped;
char _padding[3];
CFMutableSetRef _sources0; //sources0 事件集合
CFMutableSetRef _sources1; //sources1 事件集合
CFMutableArrayRef _observers; //观察者数组
CFMutableArrayRef _timers; //timers 数组
CFMutableDictionaryRef _portToV1SourceMap;
__CFPortSet _portSet;
CFIndex _observerMask;
#if USE_DISPATCH_SOURCE_FOR_TIMERS
dispatch_source_t _timerSource; //GCD 时钟
dispatch_queue_t _queue;
Boolean _timerFired; // set to true by the source when a timer has fired
Boolean _dispatchTimerArmed;
#endif
#if USE_MK_TIMER_TOO
mach_port_t _timerPort; //内核时钟
Boolean _mkTimerArmed;
#endif
#if DEPLOYMENT_TARGET_WINDOWS
DWORD _msgQMask;
void (*_msgPump)(void);
#endif
uint64_t _timerSoftDeadline; /* TSR */
uint64_t _timerHardDeadline; /* TSR */
};
再看下runloop内部:
struct __CFRunLoop {
....
CFMutableSetRef _commonModes;// 公共的mdoes 集合
CFMutableSetRef _commonModeItems; //公共的mode 元素体
这里有个概念叫 "CommonModes":一个 Mode 可以将自己标记为"Common"属性(通过将其 ModeName 添加到 RunLoop 的 "commonModes" 中)。
每当 RunLoop 的内容发生变化时,RunLoop 都会自动将 _commonModeItems 里的 Source/Observer/Timer 同步到具有 "Common" 标记的所有Mode里。
如上文说的 RunLoop 一次循环只能运行在一个 Mode 下,是为了分隔开不同组的 Source/Timer/Observer,让其互不影响。但如果一个 Source/Timer/Observer 想在多个 Mode 下运作,则可以分别加入到多个 Mode,或者给两个 Mode 添加 "Common" 标记,再将 Source/Timer/Observer 加入到 RunLoop 的 "commonModeItems" 。
应用场景举例:主线程的 RunLoop 里有两个预置的 Mode:kCFRunLoopDefaultMode 和 UITrackingRunLoopMode。这两个 Mode 都已经被标记为"Common"属性。DefaultMode 是 App 平时所处的状态,TrackingRunLoopMode 是追踪 ScrollView 滑动时的状态。
当你创建一个 Timer 并加到 DefaultMode 时,Timer 会得到重复回调,但此时滑动一个TableView时,RunLoop 会将 mode 切换为 TrackingRunLoopMode,此时kCFRunLoopDefaultMode 下的 所有事件得不到观察处理,这时 Timer 就不会被回调,并且也不会影响到滑动操作。
有时你需要一个 Timer,在两个 Mode 中都能得到回调,
一种办法就是将这个 Timer 分别加入这两个 Mode。
还有一种方式,就是将 Timer 加入到顶层的 RunLoop 的 "commonModeItems" 中。"commonModeItems" 被 RunLoop 自动更新到所有具有"Common"属性的 Mode 里去。
普通的mode 加入到commonMode 中的操作函数:
void CFRunLoopAddCommonMode(CFRunLoopRef rl, CFStringRef modeName) {
CHECK_FOR_FORK();
if (__CFRunLoopIsDeallocating(rl)) return;
__CFRunLoopLock(rl);
if (!CFSetContainsValue(rl->_commonModes, modeName)) { //判断common中是否已经包含此runloop
//获取此runloop下的_commonModeItems放入集合中
CFSetRef set = rl->_commonModeItems ? CFSetCreateCopy(kCFAllocatorSystemDefault, rl->_commonModeItems) : NULL;
CFSetAddValue(rl->_commonModes, modeName);
if (NULL != set) {
CFTypeRef context[2] = {rl, modeName};
/* 把所有的 items 添加到commonmode中 */
CFSetApplyFunction(set, (__CFRunLoopAddItemsToCommonMode), (void *)context);
CFRelease(set);
}
} else {
}
__CFRunLoopUnlock(rl);
}
runloopModel 切换执行:
//runloop mode 切换函数
SInt32 CFRunLoopRunInMode(CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
CHECK_FOR_FORK();
return CFRunLoopRunSpecific(CFRunLoopGetCurrent(), modeName, seconds, returnAfterSourceHandled);
}
//默认模式下runloop 的模式为 kCFRunLoopDefaultMode
void CFRunLoopRun(void) { /* DOES CALLOUT */
int32_t result;
do {
result = CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false);
CHECK_FOR_FORK();
} while (kCFRunLoopRunStopped != result && kCFRunLoopRunFinished != result);
}
SInt32 CFRunLoopRunSpecific(CFRunLoopRef rl, CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */
CHECK_FOR_FORK();
if (__CFRunLoopIsDeallocating(rl)) return kCFRunLoopRunFinished;
__CFRunLoopLock(rl);
// 通过modeName 找到对应的Mode
CFRunLoopModeRef currentMode = __CFRunLoopFindMode(rl, modeName, false);
if (NULL == currentMode || __CFRunLoopModeIsEmpty(rl, currentMode, rl->_currentMode)) {
Boolean did = false;
if (currentMode) __CFRunLoopModeUnlock(currentMode);
__CFRunLoopUnlock(rl);
return did ? kCFRunLoopRunHandledSource : kCFRunLoopRunFinished;
}
volatile _per_run_data *previousPerRun = __CFRunLoopPushPerRunData(rl);
CFRunLoopModeRef previousMode = rl->_currentMode;
rl->_currentMode = currentMode;
int32_t result = kCFRunLoopRunFinished;
if (currentMode->_observerMask & kCFRunLoopEntry ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry);
//最终调用这个looprun函数
result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode);
if (currentMode->_observerMask & kCFRunLoopExit ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);
__CFRunLoopModeUnlock(currentMode);
__CFRunLoopPopPerRunData(rl, previousPerRun);
rl->_currentMode = previousMode;
__CFRunLoopUnlock(rl);
return result;
}
Mode 暴露的管理 mode item 的接口:
添加删除source事件
CF_EXPORT Boolean CFRunLoopContainsSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef mode);
CF_EXPORT void CFRunLoopAddSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef mode);
CF_EXPORT void CFRunLoopRemoveSource(CFRunLoopRef rl, CFRunLoopSourceRef source, CFStringRef mode);
添加删除观察者
CF_EXPORT Boolean CFRunLoopContainsObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef mode);
CF_EXPORT void CFRunLoopAddObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef mode);
CF_EXPORT void CFRunLoopRemoveObserver(CFRunLoopRef rl, CFRunLoopObserverRef observer, CFStringRef mode);
添加删除timer
CF_EXPORT Boolean CFRunLoopContainsTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
CF_EXPORT void CFRunLoopAddTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
CF_EXPORT void CFRunLoopRemoveTimer(CFRunLoopRef rl, CFRunLoopTimerRef timer, CFStringRef mode);
你只能通过 mode name 来操作内部的 mode,当你传入一个新的 mode name 但 RunLoop 内部没有对应 mode 时,RunLoop会自动帮你创建对应的 CFRunLoopModeRef。对于一个 RunLoop 来说,其内部的 mode 只能增加不能删除。
苹果公开提供的 Mode 有两个:kCFRunLoopDefaultMode (NSDefaultRunLoopMode) 和 UITrackingRunLoopMode,你可以用这两个 Mode Name 来操作其对应的 Mode。
同时苹果还提供了一个操作 Common 标记的字符串:kCFRunLoopCommonModes (NSRunLoopCommonModes),你可以用这个字符串来操作 Common Items,或标记一个 Mode 为 "Common"。使用时注意区分这个字符串和其他 mode name。
RunLoop 的内部逻辑
首先看个优美的图片:
下面准备好咖啡看一个超级长的代码:
/* rl, rlm are locked on entrance and exit */
static int32_t __CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode) {
uint64_t startTSR = mach_absolute_time(); //获取当前时间
if (__CFRunLoopIsStopped(rl)) { //当前runloop停止或者为停止状态直接返回
__CFRunLoopUnsetStopped(rl);
return kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
rlm->_stopped = false;
return kCFRunLoopRunStopped;
}
//判断是否是第一次在主线程中启动RunLoop,如果是且当前RunLoop为主线程的RunLoop
mach_port_name_t dispatchPort = MACH_PORT_NULL;
Boolean libdispatchQSafe = pthread_main_np() && ((HANDLE_DISPATCH_ON_BASE_INVOCATION_ONLY && NULL == previousMode) || (!HANDLE_DISPATCH_ON_BASE_INVOCATION_ONLY && 0 == _CFGetTSD(__CFTSDKeyIsInGCDMainQ)));
if (libdispatchQSafe && (CFRunLoopGetMain() == rl) && CFSetContainsValue(rl->_commonModes, rlm->_name))
//那么就给分发一个队列调度端口
dispatchPort = _dispatch_get_main_queue_port_4CF();
#if USE_DISPATCH_SOURCE_FOR_TIMERS
//给当前模式分发队列端口
mach_port_name_t modeQueuePort = MACH_PORT_NULL;
if (rlm->_queue) {
modeQueuePort = _dispatch_runloop_root_queue_get_port_4CF(rlm->_queue);
if (!modeQueuePort) {
CRASH("Unable to get port for run loop mode queue (%d)", -1);
}
}
#endif
//初始化一个GCD计时器,用于管理当前模式的超时
dispatch_source_t timeout_timer = NULL;
struct __timeout_context *timeout_context = (struct __timeout_context *)malloc(sizeof(*timeout_context));
if (seconds <= 0.0) { // instant timeout 根据传入的超时时间来判断
seconds = 0.0;
timeout_context->termTSR = 0ULL;
} else if (seconds <= TIMER_INTERVAL_LIMIT) {
dispatch_queue_t queue = pthread_main_np() ? __CFDispatchQueueGetGenericMatchingMain() : __CFDispatchQueueGetGenericBackground();
timeout_timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue);
dispatch_retain(timeout_timer);
timeout_context->ds = timeout_timer;
timeout_context->rl = (CFRunLoopRef)CFRetain(rl);
timeout_context->termTSR = startTSR + __CFTimeIntervalToTSR(seconds);
dispatch_set_context(timeout_timer, timeout_context); // source gets ownership of context
dispatch_source_set_event_handler_f(timeout_timer, __CFRunLoopTimeout);
dispatch_source_set_cancel_handler_f(timeout_timer, __CFRunLoopTimeoutCancel);
uint64_t ns_at = (uint64_t)((__CFTSRToTimeInterval(startTSR) + seconds) * 1000000000ULL);
dispatch_source_set_timer(timeout_timer, dispatch_time(1, ns_at), DISPATCH_TIME_FOREVER, 1000ULL);
dispatch_resume(timeout_timer);
} else { // infinite timeout
seconds = 9999999999.0;
timeout_context->termTSR = UINT64_MAX;
}
//第一步,进入循环
Boolean didDispatchPortLastTime = true;
int32_t retVal = 0;
do {
//跨平台的宏
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
voucher_mach_msg_state_t voucherState = VOUCHER_MACH_MSG_STATE_UNCHANGED;
voucher_t voucherCopy = NULL;
#endif
uint8_t msg_buffer[3 * 1024];
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
mach_msg_header_t *msg = NULL;
mach_port_t livePort = MACH_PORT_NULL;
#elif DEPLOYMENT_TARGET_WINDOWS
HANDLE livePort = NULL;
Boolean windowsMessageReceived = false;
#endif
__CFPortSet waitSet = rlm->_portSet;
//设置当前循环监听端口的唤醒
__CFRunLoopUnsetIgnoreWakeUps(rl);
//第二步,通知观察者将要处理timer源事件
if (rlm->_observerMask & kCFRunLoopBeforeTimers) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers);
//第三步,通知观察者将要处理source 源事件
if (rlm->_observerMask & kCFRunLoopBeforeSources) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources);
//执行提交到runLoop中的block
__CFRunLoopDoBlocks(rl, rlm);
// 第四步,执行source0中的源事件
Boolean sourceHandledThisLoop = __CFRunLoopDoSources0(rl, rlm, stopAfterHandle);
if (sourceHandledThisLoop) {
//如果当前source0源事件处理完成后执行提交到runLoop中的block
__CFRunLoopDoBlocks(rl, rlm);
}
//标志是否等待端口唤醒
Boolean poll = sourceHandledThisLoop || (0ULL == timeout_context->termTSR);
// 第五步,检测端口,如果端口有事件则跳转至handle_msg(首次执行不会进入判断,因为didDispatchPortLastTime为true)
if (MACH_PORT_NULL != dispatchPort && !didDispatchPortLastTime) {
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
msg = (mach_msg_header_t *)msg_buffer;
if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0, &voucherState, NULL)) {
goto handle_msg;
}
#elif DEPLOYMENT_TARGET_WINDOWS
if (__CFRunLoopWaitForMultipleObjects(NULL, &dispatchPort, 0, 0, &livePort, NULL)) {
goto handle_msg;
}
#endif
}
didDispatchPortLastTime = false;
// 第六步,通知观察者线程进入休眠
if (!poll && (rlm->_observerMask & kCFRunLoopBeforeWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting);
// 标志当前runLoop为休眠状态
__CFRunLoopSetSleeping(rl);
__CFPortSetInsert(dispatchPort, waitSet);
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
CFAbsoluteTime sleepStart = poll ? 0.0 : CFAbsoluteTimeGetCurrent();
// 第七步,进入循环开始不断的读取端口信息,如果端口有唤醒信息则唤醒当前runLoop
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
#if USE_DISPATCH_SOURCE_FOR_TIMERS
do {
if (kCFUseCollectableAllocator) {
// objc_clear_stack(0);
//
memset(msg_buffer, 0, sizeof(msg_buffer));
}
msg = (mach_msg_header_t *)msg_buffer;
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);
if (modeQueuePort != MACH_PORT_NULL && livePort == modeQueuePort) {
// Drain the internal queue. If one of the callout blocks sets the timerFired flag, break out and service the timer.
while (_dispatch_runloop_root_queue_perform_4CF(rlm->_queue));
if (rlm->_timerFired) {
// Leave livePort as the queue port, and service timers below
rlm->_timerFired = false;
break;
} else {
if (msg && msg != (mach_msg_header_t *)msg_buffer) free(msg);
}
} else {
// Go ahead and leave the inner loop.
break;
}
} while (1);
#else
if (kCFUseCollectableAllocator) {
// objc_clear_stack(0);
//
memset(msg_buffer, 0, sizeof(msg_buffer));
}
msg = (mach_msg_header_t *)msg_buffer;
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy);
#endif
#elif DEPLOYMENT_TARGET_WINDOWS
// Here, use the app-supplied message queue mask. They will set this if they are interested in having this run loop receive windows messages.
__CFRunLoopWaitForMultipleObjects(waitSet, NULL, poll ? 0 : TIMEOUT_INFINITY, rlm->_msgQMask, &livePort, &windowsMessageReceived);
#endif
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
rl->_sleepTime += (poll ? 0.0 : (CFAbsoluteTimeGetCurrent() - sleepStart));
__CFPortSetRemove(dispatchPort, waitSet);
//标志当前runLoop为唤醒状态
__CFRunLoopSetIgnoreWakeUps(rl);
// user callouts now OK again
__CFRunLoopUnsetSleeping(rl);
// 第八步,通知观察者线程被唤醒了
if (!poll && (rlm->_observerMask & kCFRunLoopAfterWaiting)) __CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting);
//执行端口的事件
handle_msg:;
//设置此时runLoop忽略端口唤醒(保证线程安全)
__CFRunLoopSetIgnoreWakeUps(rl);
#if DEPLOYMENT_TARGET_WINDOWS
#endif
// 第九步,处理端口事件
if (MACH_PORT_NULL == livePort) {
CFRUNLOOP_WAKEUP_FOR_NOTHING();
// handle nothing
} else if (livePort == rl->_wakeUpPort) {
CFRUNLOOP_WAKEUP_FOR_WAKEUP();
// do nothing on Mac OS
#if DEPLOYMENT_TARGET_WINDOWS
// Always reset the wake up port, or risk spinning forever
ResetEvent(rl->_wakeUpPort);
#endif
}
#if USE_DISPATCH_SOURCE_FOR_TIMERS
else if (modeQueuePort != MACH_PORT_NULL && livePort == modeQueuePort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer, because we apparently fired early
__CFArmNextTimerInMode(rlm, rl);
}
}
#endif
#if USE_MK_TIMER_TOO
//内核时钟唤醒事件
else if (rlm->_timerPort != MACH_PORT_NULL && livePort == rlm->_timerPort) {
CFRUNLOOP_WAKEUP_FOR_TIMER();
if (!__CFRunLoopDoTimers(rl, rlm, mach_absolute_time())) {
// Re-arm the next timer
__CFArmNextTimerInMode(rlm, rl);
}
}
#endif
// 处理gcd提交到主线程的唤醒事件
else if (livePort == dispatchPort) {
CFRUNLOOP_WAKEUP_FOR_DISPATCH();
__CFRunLoopModeUnlock(rlm);
__CFRunLoopUnlock(rl);
_CFSetTSD(__CFTSDKeyIsInGCDMainQ, (void *)6, NULL);
#if DEPLOYMENT_TARGET_WINDOWS
void *msg = 0;
#endif
__CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
_CFSetTSD(__CFTSDKeyIsInGCDMainQ, (void *)0, NULL);
__CFRunLoopLock(rl);
__CFRunLoopModeLock(rlm);
sourceHandledThisLoop = true;
didDispatchPortLastTime = true;
} else {
//处理source1唤醒的事件
CFRUNLOOP_WAKEUP_FOR_SOURCE();
voucher_t previousVoucher = _CFSetTSD(__CFTSDKeyMachMessageHasVoucher, (void *)voucherCopy, os_release);
// Despite the name, this works for windows handles as well
CFRunLoopSourceRef rls = __CFRunLoopModeFindSourceForMachPort(rl, rlm, livePort);
if (rls) {
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
mach_msg_header_t *reply = NULL;
// 处理Source1(基于端口的源)
sourceHandledThisLoop = __CFRunLoopDoSource1(rl, rlm, rls, msg, msg->msgh_size, &reply) || sourceHandledThisLoop;
if (NULL != reply) {
(void)mach_msg(reply, MACH_SEND_MSG, reply->msgh_size, 0, MACH_PORT_NULL, 0, MACH_PORT_NULL);
CFAllocatorDeallocate(kCFAllocatorSystemDefault, reply);
}
#elif DEPLOYMENT_TARGET_WINDOWS
sourceHandledThisLoop = __CFRunLoopDoSource1(rl, rlm, rls) || sourceHandledThisLoop;
#endif
}
// Restore the previous voucher
_CFSetTSD(__CFTSDKeyMachMessageHasVoucher, previousVoucher, os_release);
}
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
if (msg && msg != (mach_msg_header_t *)msg_buffer) free(msg);
#endif
__CFRunLoopDoBlocks(rl, rlm);
//返回对应的返回值并跳出循环
if (sourceHandledThisLoop && stopAfterHandle) {
retVal = kCFRunLoopRunHandledSource;
} else if (timeout_context->termTSR < mach_absolute_time()) {
retVal = kCFRunLoopRunTimedOut;
} else if (__CFRunLoopIsStopped(rl)) {
__CFRunLoopUnsetStopped(rl);
retVal = kCFRunLoopRunStopped;
} else if (rlm->_stopped) {
rlm->_stopped = false;
retVal = kCFRunLoopRunStopped;
} else if (__CFRunLoopModeIsEmpty(rl, rlm, previousMode)) {
retVal = kCFRunLoopRunFinished;
}
#if DEPLOYMENT_TARGET_MACOSX || DEPLOYMENT_TARGET_EMBEDDED || DEPLOYMENT_TARGET_EMBEDDED_MINI
voucher_mach_msg_revert(voucherState);
os_release(voucherCopy);
#endif
} while (0 == retVal);
// 第十步,释放定时器
if (timeout_timer) {
dispatch_source_cancel(timeout_timer);
dispatch_release(timeout_timer);
} else {
free(timeout_context);
}
return retVal;
}
上面核心代码主要做的事情去是:
首先进入runLoop对应的Mode并开始循环,然后在休眠之前做了三件事:DoBlocks、DoSource0、检测source1端口是否有消息,如果有则跳过稍后的休眠。
然后runLoop就进入了休眠状态,直到有端口事件唤醒runLoop,被唤醒后则处理响应的端口事件然后再次开始循环。直到runLoop超时或者runLoop被停止后在结束runLoop。
source0,source1
首先这个源事件分为两种,一种是不基于端口的source0,一个是基于端口的source1。
Source0 只包含了一个回调(函数指针),它并不能主动触发事件。使用时,你需要先调用 CFRunLoopSourceSignal(source),将这个 Source 标记为待处理,然后手动调用 CFRunLoopWakeUp(runloop) 来唤醒 RunLoop,让其处理这个事件。
Source1 包含了一个 mach_port 和一个回调(函数指针),被用于通过内核和其他线程相互发送消息。这种 Source 能主动唤醒 RunLoop 的线程,其原理在下面会讲到。
RunLoop 的底层实现
从上面我们可以了解,线程和进程之间的通讯是基于 mach port 传递消息实现的,这也是 RunLoop 的核心。有必要了解一下 mach port, OSX/iOS 的系统架构分为 4 层,从外到内为应用层,应用框架层,核心框架层,Darwin。应用层包括用户能接触到的图形应用,应用框架层即开发人员接触到的 Cocoa 等框架,核心框架层包括各种核心框架、OpenGL 等内容,Darwin 即操作系统的核心,包括系统内核、驱动、Shell 等内容。
我们在深入看一下 Darwin 这个核心的架构:
其中,在硬件层上面的三个组成部分:Mach、BSD、IOKit (还包括一些上面没标注的内容),共同组成了 XNU 内核。
XNU 内核的内环被称作 Mach,其作为一个微内核,仅提供了诸如处理器调度、IPC (进程间通信)等非常少量的基础服务。
BSD 层可以看作围绕 Mach 层的一个外环,其提供了诸如进程管理、文件系统和网络等功能。
IOKit 层是为设备驱动提供了一个面向对象(C++)的一个框架。
Mach 本身提供的 API 非常有限,而且苹果也不鼓励使用 Mach 的 API,但是这些API非常基础,如果没有这些API的话,其他任何工作都无法实施。在 Mach 中,所有的东西都是通过自己的对象实现的,进程、线程和虚拟内存都被称为"对象"。和其他架构不同, Mach 的对象间不能直接调用,只能通过消息传递的方式实现对象间的通信。"消息"是 Mach 中最基础的概念,消息在两个端口 (port) 之间传递,这就是 Mach 的 IPC (进程间通信) 的核心。
Mach 的消息定义是在
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
} mach_msg_base_t;
typedef struct {
mach_msg_bits_t msgh_bits;
mach_msg_size_t msgh_size;
mach_port_t msgh_remote_port;
mach_port_t msgh_local_port;
mach_port_name_t msgh_voucher_port;
mach_msg_id_t msgh_id;
} mach_msg_header_t;
一条 Mach 消息实际上就是一个二进制数据包 (BLOB),其头部定义了当前端口 local_port 和目标端口 remote_port,
发送和接受消息是通过同一个 API 进行的,其 option 标记了消息传递的方向:
mach_msg_return_t mach_msg(
mach_msg_header_t *msg,
mach_msg_option_t option,
mach_msg_size_t send_size,
mach_msg_size_t rcv_size,
mach_port_name_t rcv_name,
mach_msg_timeout_t timeout,
mach_port_name_t notify);
为了实现消息的发送和接收,mach_msg() 函数实际上是调用了一个 Mach 陷阱 (trap),即函数mach_msg_trap(),陷阱这个概念在 Mach 中等同于系统调用。当你在用户态调用 mach_msg_trap() 时会触发陷阱机制,切换到内核态;内核态中内核实现的 mach_msg() 函数会完成实际的工作,如下图:
RunLoop 的核心就是一个 mach_msg() (见上面代码的第7步),RunLoop 调用这个函数去接收消息,如果没有别人发送 port 消息过来,内核会将线程置于等待状态。例如你在模拟器里跑起一个 iOS 的 App,然后在 App 静止时点击暂停,你会看到主线程调用栈是停留在 mach_msg_trap() 这个地方。
苹果用RunLoop 实现的功能
AutoreleasePool
App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()。
第一个 Observer 监视的事件是 Entry(即将进入Loop),其回调内会调用 _objc_autoreleasePoolPush() 创建自动释放池。其 order 是-2147483647,优先级最高,保证创建释放池发生在其他所有回调之前。
第二个 Observer 监视了两个事件:
- BeforeWaiting(准备进入休眠) 时调用_objc_autoreleasePoolPop() 和 _objc_autoreleasePoolPush() 释放旧的池并创建新池;
- Exit(即将退出Loop) 时调用 _objc_autoreleasePoolPop() 来释放自动释放池。这个 Observer 的 order 是 2147483647,优先级最低,保证其释放池子发生在其他所有回调之后。
在主线程执行的代码,通常是写在诸如事件回调、Timer回调内的。这些回调会被 RunLoop 创建好的 AutoreleasePool 环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool 了。
事件响应
苹果注册了一个 Source1 (基于 mach port 的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()。
当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework 生成一个 IOHIDEvent 事件并由 SpringBoard 接收。这个过程的详细情况可以参考这里。SpringBoard 只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event,随后用 mach port 转发给需要的App进程。
随后苹果注册的那个 Source1 就会触发回调,并调用 _UIApplicationHandleEventQueue() 进行应用内部的分发,此过程是Source0 完成的。
_UIApplicationHandleEventQueue() 会把 IOHIDEvent 处理并包装成 UIEvent 进行处理或分发,其中包括识别 UIGesture/处理屏幕旋转/发送给 UIWindow 等。通常事件比如 UIButton 点击、touchesBegin/Move/End/Cancel 事件都是在这个回调中完成的。
手势识别
当上面的 _UIApplicationHandleEventQueue() 识别了一个手势时,其首先会调用 Cancel 将当前的 touchesBegin/Move/End 系列回调打断。随后系统将对应的 UIGestureRecognizer 标记为待处理。
苹果注册了一个 Observer 监测 BeforeWaiting (Loop即将进入休眠) 事件,这个Observer的回调函数是 _UIGestureRecognizerUpdateObserver(),其内部会获取所有刚被标记为待处理的 GestureRecognizer,并执行GestureRecognizer的回调。
当有 UIGestureRecognizer 的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。
界面刷新
当UI改变( Frame变化、 UIView/CALayer 的继承结构变化等)时,或手动调用了 UIView/CALayer 的 setNeedsLayout/setNeedsDisplay方法后,这个 UIView/CALayer 就被标记为待处理。
苹果注册了一个用来监听BeforeWaiting和Exit的Observer,在它的回调函数里会遍历所有待处理的 UIView/CAlayer 以执行实际的绘制和调整,并更新 UI 界面。
定时器
经典问题分析:
- 当使用NSTimer的scheduledTimerWithTimeInterval方法时。事实上此时Timer会被加入到当前线程的Run Loop中,且模式是默认的NSDefaultRunLoopMode。而如果当前线程就是主线程,也就是UI线程时,某些UI事件,比如UIScrollView的拖动操作,会将Run Loop切换成NSEventTrackingRunLoopMode模式,在这个过程中,默认的NSDefaultRunLoopMode模式中注册的事件是不会被执行的。也就是说,此时使用scheduledTimerWithTimeInterval添加到Run Loop中的Timer就不会执行。
所以为了设置一个不被UI干扰的Timer,我们需要手动创建一个Timer,然后使用NSRunLoop的addTimer:forMode:方法来把Timer按照指定模式加入到Run Loop中。这里使用的模式是:NSRunLoopCommonModes,这个模式等效于NSDefaultRunLoopMode和NSEventTrackingRunLoopMode的结合。
- 无论是单次执行的NSTimer还是重复执行的NSTimer都不是准时的,这与当前NSTimer所处的线程有很大的关系,如果NSTimer当前所处的线程正在进行大数据处理(假设为一个大循环),NSTimer本次执行会等到这个大数据处理完毕之后才会继续执行
这期间有可能会错过很多次NSTimer的循环周期,但是NSTimer并不会将前面错过的执行次数在后面都执行一遍,而是继续执行后面的循环,也就是在一个循环周期内只会执行一次循环。
无论循环延迟的多离谱,循环间隔都不会发生变化,在进行完大数据处理之后,有可能会立即执行一次NSTimer循环,但是后面的循环间隔始终和第一次添加循环时的间隔相同。
<
这个事件是怎么执行的?并且为什么有的时候会延迟?为什么子线程中创建的Timer并不执行?
首先,在进入循环开始以后,就要处理source0事件,处理后检测一下source1端口是否有消息,如果一个Timer的时间间隔刚好到了则此处有可能会得到一个消息,则runLoop直接跳转至端口激活处从而去处理Timer事件。
第二,为什么会延迟?我们知道,两次端口事件是在两个runLoop循环中分别执行的。比如Timer的时间间隔为1秒,在第一次Timer回调结束后,在很短时间内立即进入runLoop的下一次循环,这次并不是Timer回调并且是一个计算量非常大的任务,计算时间超过了1秒,那么runLoop的第二个循环就要执行很久,无法进入下一个循环等待有可能即将到来的Timer第二次回调的信号,所以Timer第二次回调就会推迟了。
第三,为什么在子线程中创建的Timer并且提交到当前runLoop中并不会运行?这还是要从runLoop的获取函数中看,当调用currentRunLoop的时候会取当前线程对应的runLoop,而首次是取不到的,则会创建一个新的runLoop。但是!这个runLoop并没有run。就是没有开启=。=
PerformSelecter
当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会创建一个 Timer 并添加到当前线程的 RunLoop 中。所以如果当前线程没有 RunLoop,则这个方法会失效。
当调用 performSelector:onThread: 时,实际上其会创建一个 Timer 加到对应的线程去,同样的,如果对应线程没有 RunLoop 该方法也会失效。
Runloop 开发中运用
- 滑动与图片刷新:
当tableview的cell上有需要从网络获取的图片的时候,滚动tableView,异步线程会去加载图片,加载完成后主线程就会设置cell的图片,但是会造成卡顿。可以让设置图片的任务在CFRunLoopDefaultMode下进行,当滚动tableView的时候,RunLoop是在 UITrackingRunLoopMode 下进行,不去设置图片,而是当停止的时候,再去设置图片。
-(void)viewDidLoad {
[super viewDidLoad];
// 只在NSDefaultRunLoopMode下执行(刷新图片)
[self.myImageView performSelector:@selector(setImage:) withObject:[UIImage imageNamed:@""] afterDelay:ti inModes:@[NSDefaultRunLoopMode]];
}
- 常驻子线程,保持子线程一直处理事件
self.thread = [[NSThread alloc] initWithTarget:self selector:@selector(print) object:nil];
[self.thread start];
}
-(void)print{
NSLog(@"----run1-----");
// 添加下边两句代码,就可以开启RunLoop,之后self.thread就变成了常驻线程,可随时添加任务,并交于RunLoop处理
[[NSRunLoop currentRunLoop] addPort:[NSPort port] forMode:NSDefaultRunLoopMode];
[[NSRunLoop currentRunLoop] run];
// 测试是否开启了RunLoop,如果开启RunLoop,则来不了这里,因为RunLoop开启了循环。
NSLog(@"未开启RunLoop");
}
- (IBAction)BtnClick:(id)sender {
NSLog(@"xffffaaa");
[self performSelector:@selector(run2) onThread:self.thread withObject:nil waitUntilDone:NO];
}
-(void)run2{
while (1) {
sleep(1);
NSLog(@"xxxxgag");
}
}
未完待续:
这篇文章是根据大家的文章总结出来的,还有好多地方需要后续优化,目前先共自己学习理解,大家可以参考学习,欢迎指出错误。
友情链接:
牛逼:http://blog.ibireme.com/2015/05/18/runloop/
源码解析:http://www.jianshu.com/p/ec629063390f
runloop注释:http://blog.csdn.net/ssirreplaceable/article/details/53793456
iOS多线程--彻底学会多线程之『RunLoop』:http://www.jianshu.com/p/d260d18dd551
基于runloop的线程保活、销毁与通信
:http://www.jianshu.com/p/4d5b6fc33519
视频:http://v.youku.com/v_show/id_XODgxODkzODI0.html