scrapy爬虫编写流程

1:建立虚拟环境 mkvirtualenv --python=(python路径) 虚拟环境名

2:进入虚拟环境 workon 虚拟环境名

3:安装scrapy 使用豆瓣源安装 pip install -i https://pypi.douban.com/simple/ scrapy

4:进入工程目录,创建工程  scrapy startproject ArticleSpider(项目名称)

5:进入pycharm,导入工程,选择环境

6:进入spiders,创建爬虫 scrapy genspider jobbole(名称) blog.jobbole.com(域名)

7:创建main.py进行调试
    from scrapy.cmdline import execute
    import sys
    import os
    sys.path.append(os.path.dirname(os.path.abspath(__file__)))

    execute(["scrapy","crawl","jobbole"])

8:在settings.py中设置ROBOTSTXT_OBEY = False

9:编写parse()函数

    功能:

1.获取文章列表中的文章url并交给scrapy下载后并进行解析
2.获取下一页的url并交给scrapy进行下载, 下载完成后交给parse

    0:调用

import scrapy
import re
from scrapy.http import Request
from urllib import parse

    1:代码

 

def parse(self, response):
    """
    1.获取文章列表中的文章url并交给scrapy下载后并进行解析
    2.获取下一页的url并交给scrapy进行下载, 下载完成后交给parse
    :param response:
    :return:
    """
    #获取列表页所有文章的url并交给scrapy下载后进行解析

    post_nodes = response.css("div#archive div.floated-thumb div.post-thumb a")
    for post_node in post_nodes:
        post_url = post_node.css("::attr(href)").extract_first("")
        img_url = post_node.css("img::attr(src)").extract_first("")
        # img_url = parse.urljoin(response.url,img_url)

        yield Request(url=parse.urljoin(response.url, post_url), meta={"front_image_url":img_url},callback=self.parse_detail,dont_filter=True)
        # print(post_url)
    #提取下一页url并交给scrapy进行下载
    next_url = response.css("a.next.page-numbers::attr(href)").extract_first()
    if next_url:
        yield Request(url=parse.urljoin(response.url, next_url), callback=self.parse,dont_filter=True)

 

        yield用于交给scrapy进行下载

 

        parse.urljoin将域名和网址合并成最终网址

        callback传递回调函数

        设置dont_filter=True防止被过滤掉而不去执行callback

      meta参数很重要,用来将列表页面爬取的内容如封面图传递给parse_deatil中的response,在response中可以用front_image_url = response.meta.get("front_image_url","")接收

 

10:在jobbole.py中的定义方法paser_detail(self,response),使用xpath或css选择器对网页字段解析。 start_urls设置为爬虫初始列表页网址。

在cmd中使用 scrapy shell 网址 进行调试

response.xpth("xpth语法/text()").extract_first()

response.css("css语法::text").extract_first()

xpath:

scrapy爬虫编写流程_第1张图片

scrapy爬虫编写流程_第2张图片

scrapy爬虫编写流程_第3张图片

@后跟属性名

属性名=“属性值”

/text()提取标签内容

response.xpath().extract() 可提取内容组成数组

如果一个标签的属性有多个值,xpath可调用函数contains

response.xpath("//span[contains(@class,'vote-post-up')]")  

即:span标签中包含vote-post-up即可

css:

scrapy爬虫编写流程_第4张图片

scrapy爬虫编写流程_第5张图片

scrapy爬虫编写流程_第6张图片

例:

 

def parse_detail(self, response):
    #提取文章具体字段
    # re_selector = response.xpath("//*[@id='post-113568']/div[1]/h1/text()")
    title = response.xpath("//*[@id='post-113568']/div[1]/h1/text()").extract()[0]
    praise_nums = response.xpath("//div[@class='post-adds']/span[1]/h10/text()").extract()[0]

    fav_nums = response.xpath("//div[@class='post-adds']/span[2]/text()").extract()[0]
    match_re = re.match(".*(\d+).*",fav_nums)
    if match_re:
        fav_nums = int(match_re.group(1))
    else:
        fav_nums = 0

response.css("div#archive div.floated-thumb div.post-thumb a::attr(href)").extract_first()

 

11:编写items.py

        将爬取过来的每一个item实例路由到pipelines,在piplines中集中处理数据的保存、去重等。类似于字典,比字典功能要多。在Item中只有一个Field类型,可以保存任意数据类型。title = scrapy.Filed()

        在items.py中新建一个类,并定义好item

 

class JobBoleArticleItem(scrapy.Item):
    title = scrapy.Field()
    create_data = scrapy.Field()
    url = scrapy.Field()
    url_object_id = scrapy.Field()
    front_image_url = scrapy.Field()
    front_image_path = scrapy.Field()
    praise_nums = scrapy.Field()
    comment_nums = scrapy.Field()
    fav_nums = scrapy.Field()
    tags = scrapy.Field()
    content = scrapy.Field()

 

        在jobbole.py中引用定义好的JobBoleArticleItem

 

 

from ArticleSpider.items import JobBoleArticleItem

        在函数parse_detail中将爬取的项保存在item中

        

article_item = JobBoleArticleItem()

article_item["title"] = title
article_item["url"] = response.url
article_item["create_data"] = creat_data
article_item["front_image_url"] = front_image_url
article_item["fav_nums"] = fav_nums
article_item["comment_nums"] = comment_nums
article_item["praise_nums"] = praise_nums
article_item["tags"] = tags
article_item["content"] = content

yield article_item  #传递到pipelines中

 

12:配置settings.py和pipelines.py

在settings.py中将item的pipeline打开

 

ITEM_PIPELINES = {
   'ArticleSpider.pipelines.ArticlespiderPipeline': 300,#item的传输管道  数字越小越早进入管道
    # 'scrapy.pipelines.images.ImagesPipeline':1,  #比300小说明先进入这里
    'ArticleSpider.pipelines.ArticleImagePipeline': 1,
}
IMAGES_URLS_FIELD = "front_image_url" #处理的形式为数组   所以要将item中此项改为数组
project_dir = os.path.abspath(os.path.dirname(__file__))
IMAGES_STORE = os.path.join(project_dir,"images")

scrapy.pipelines.images.ImagesPipeline 是将爬取的图片进行下载

IMAGES_URLS_FIELD 是将item中的front_image_url传递过来  才能对图片进行下载

project_dir 为获取当前目录

IMAGES_STORE 设置图片保存路径

ArticleSpider.pipelines.ArticleImagePipeline为在piplinse.py中的自定义类

 

from scrapy.pipelines.images import ImagesPipeline

 

class ArticleImagePipeline(ImagesPipeline):
    def item_completed(self, results, item, info):
        for ok, value in results:
            image_file_path = value["path"]
        item["front_image_path"] = image_file_path

        return item

该类继承ImagesPipeline 并重写了item_completed方法,目的是获取图片路径并添加到item

 

url_object_id = scrapy.Field() #使用md5函数把url变成等长的唯一序列

获取url的id就是将url通过md5方法变成唯一等长的序列

md5方法需要自己编写,新建utils包用于放自定义常用函数,创建common.py

 

import hashlib

def get_md5(url):
    if isinstance(url, str):
        url = url.encode("utf-8")
    m = hashlib.md5()
    m.update(url)
    return m.hexdigest()

由于python3中为unicode编码(判断是否为str等同于判断是否为unicode)而md5方法不识别,所以需要将传过来的url编码成utf-8.

生成id为0efdf49af511fd88681529ef8c2e5fbf的形式

然后在parse_detail方法中加入item项

 

article_item["url_object_id"] = get_md5(response.url)

这时,所有的item项赋值完毕。

 

13.将爬取的item保存到数据库或本地

将item保存为json文件,建立保存json的pipeline

自定义方式:

 

import codecs
import json

 

class JsonWithEncodingPipeline(object):
    #自定义导出json文件
    def __init__(self):
        self.file = codecs.open('article.json', 'w',encoding="utf-8")
    def process_item(self, item, spider):
        lines = json.dumps(dict(item), ensure_ascii=False) + "\n" #将item转为字典,ensure_ascii设置为False否则当有中文或其他编码时出错
        self.file.write(lines)
        return item
    def spider_closed(self, spider):
        self.file.close()

使用提供的JsonItemExporter方式:

 

from scrapy.exporters import JsonItemExporter
class JsonExporterPipleline(object):
    #调用scrapy提供的json export导出json文件
    def __init__(self):
        self.file = open('articleexport.json','wb')
        self.exporter = JsonItemExporter(self.file,encoding="utf-8",ensure_ascii=False)
        self.exporter.start_exporting()

    def close_spider(self,spider):
        self.exporter.finish_exporting()
        self.file.close()

    def process_item(self, item, spider):
        self.exporter.export_item(item)
        return item

同时需要在settings.py中设置

 

ITEM_PIPELINES = {
   # 'ArticleSpider.pipelines.ArticlespiderPipeline': 300,#item的传输管道  数字越小越早进入管道
   #  'scrapy.pipelines.images.ImagesPipeline':1,  #比300小说明先进入这里
   #  'ArticleSpider.pipelines.JsonWithEncodingPipeline': 3,
    'ArticleSpider.pipelines.JsonExporterPipleline':2,
    'ArticleSpider.pipelines.ArticleImagePipeline': 1,
}
IMAGES_URLS_FIELD = "front_image_url" #处理的形式为数组   所以要将item中此项改为数组
project_dir = os.path.abspath(os.path.dirname(__file__))
IMAGES_STORE = os.path.join(project_dir,"images")

 

将item保存到mysql数据库

pipeline中设置

 

import MySQLdb
import MySQLdb.cursors

from twisted.enterprise import adbapi #twisted提供异步操作容器

 

class MysqlTwistedPipeline(object):
    def __init__(self,dbpool):
        self.dbpool = dbpool

    @classmethod
    def from_settings(cls, settings):
        dbparms = dict(
        host = settings["MYSQL_HOST"],
        db = settings["MYSQL_DBNAME"],
        user = settings["MYSQL_USER"],
        passwd = settings["MYSQL_PASSWORD"],
        charset = "utf8",
        cursorclass = MySQLdb.cursors.DictCursor,
        use_unicode = True,
        )
        dbpool = adbapi.ConnectionPool("MySQLdb", **dbparms)
        return cls(dbpool)

    def process_item(self, item, spider):
        #使用twisted将mysql插入变成异步执行
        query = self.dbpool.runInteraction(self.do_insert, item)
        query.addErrback(self.handle_error)#处理异常

    def handle_error(self, failure):
        #处理异步的异常
        print(failure)

    def do_insert(self, cursor, item):
        #执行具体的插入
        insert_sql = "insert into jobbole_article(title, create_data, url,fav_nums,url_object_id) VALUES (%s,%s,%s,%s,%s)"
        cursor.execute(insert_sql,(item["title"],item["create_data"],item["url"],item["fav_nums"],item["url_object_id"]))

在settings.py中进行相应设置

 

你可能感兴趣的:(python)