FATFS文件系统学习笔记

什么是文件系统

      负责管理和存储文件信息的软件机构,在磁盘上组织文件的方法。

常用的文件系统

      FAT/FATFS  小型嵌入式系统

      NTFS   WINDOWS

      CDFS  光盘

      exFAT  更适用于闪存

FATFS优点:免费开源,专门为小型嵌入式系统设计,c编写,支持FAT12, FAT16 与 FAT32,支持多种存储媒介,有独立的缓冲区,可对多个文件进行读写,可裁剪的文件系统(极为重要)

FATFS的特点

FATFS文件系统学习笔记_第1张图片

      由于它以上的特点,使得FATFS在嵌入式系统中被广泛的使用

FATFS层次结构:

FATFS文件系统学习笔记_第2张图片

底层接口,包括存储媒介读/写接口(disk I/O)和供给文件创建修改时间的实时时钟需要我们根据平台和存储介质编写移植代码

中间层FATFS模块,实现了FAT 文件读/写协议。FATFS模块提供的是ff.cff.h。除非有必要,使用者一般不用修改,使用时将头文件直接包含进去即可。

最顶层是应用层,使用者无需理会FATFS的内部结构和复杂的FAT 协议,只需要调用FATFS模块提供给用户的一系列应用接口函数,如f_openf_readf_write f_close等,就可以像在PC 上读/写文件那样简单。

FATFS的整个系统包可以在FATFS的官网下载:官网地址

同时在官网还可以查看每个函数的说明,同时大部分的函数都带有示例,是不错的学习资源。

系统包的结构:

 

文件名

功能

说明

ffconf.h

FATFS模块配置文件

 需要根据需求来配置参数。

ff.h

FATFS和应用模块公用的包含文件

 不需要修改

ff.c

FATFS模块源码

 不需要修改

diskio.h

FATFSdisk I/O模块公用的包含文件

 不需要修改

 

diskio.c

FATFSdisk I/O模块接口层文件

与平台相关的代码,需要用户根据存储介质来编写函数。

interger.h

数据类型定义

与编译器有关。

option文件夹

可选的外部功能(比如支持中文等)

汉字实验把字库放到SPI FLASH需要修改

    diskio.c和diskio.h是硬件层,需要根据存储介质来修改
    ff.c和ff.h是FATFS的文件系统层和文件系统的API层

    移植步骤:1、数据类型:在integer.h 里面去定义好数据的类型。这里需要了解你用的编译器的数据类型,并根据编译器定义好数据类型。
                      2、配置:通过ffconf.h配置FATFS的相关功能,以满足你的需要。
                      3、函数编写:打开diskio.c,进行底层驱动编写,一般需要编写6 个接口函数

   相关配置宏
        _FS_TINY   mini版本的FATFS
        _FS_READONLY    设置只读,可以减少所占的空间
        _FS_MINIMIZE   削减函数
        _USE_STRFUNC     字符及字符串操作函数
        _USE_MKFS    是否启用格式化
        _USE_FASTSEEK    使能快速定位
        _USE_LABEL    是否支持磁盘盘符的设置和读取
        _CODE_PAGE    设置语言936-中文GBK编码
        _USE_LFN     是否支持长文件名,值不同存储的位置不同
        _MAX_LFN    文件名的最大长度
        _VOLUMES    支持的逻辑设备数目
       _MAX_SS    扇区缓冲最大值,一般为512

    STM32F407开发板diskio.c配置

/*-----------------------------------------------------------------------*/
/* Low level disk I/O module skeleton for FatFs     (C)ChaN, 2013        */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be        */
/* attached to the FatFs via a glue function rather than modifying it.   */
/* This is an example of glue functions to attach various exsisting      */
/* storage control module to the FatFs module with a defined API.        */
/*-----------------------------------------------------------------------*/

#include "diskio.h"		/* FatFs lower layer API */
#include "sdio_sdcard.h"
#include "w25qxx.h"
#include "malloc.h"		




#define SD_CARD	 0  //SD卡,卷标为0
#define EX_FLASH 1	//外部flash,卷标为1

#define FLASH_SECTOR_SIZE 	512			  
//对于W25Q128
//前12M字节给fatfs用,12M字节后,用于存放字库,字库占用3.09M.	剩余部分,给客户自己用	 			    
u16	    FLASH_SECTOR_COUNT=2048*12;	//W25Q1218,前12M字节给FATFS占用
#define FLASH_BLOCK_SIZE   	8     	//每个BLOCK有8个扇区

//初始化磁盘
DSTATUS disk_initialize (
	BYTE pdrv				/* Physical drive nmuber (0..) */
)
{
	u8 res=0;	    
	switch(pdrv)
	{
		case SD_CARD://SD卡
			res=SD_Init();//SD卡初始化 
  			break;
		case EX_FLASH://外部flash
			W25QXX_Init();
			FLASH_SECTOR_COUNT=2048*12;//W25Q1218,前12M字节给FATFS占用 
 			break;
		default:
			res=1; 
	}		 
	if(res)return  STA_NOINIT;
	else return 0; //初始化成功
}  

//获得磁盘状态
DSTATUS disk_status (
	BYTE pdrv		/* Physical drive nmuber (0..) */
)
{ 
	return 0;
} 

//读扇区
//drv:磁盘编号0~9
//*buff:数据接收缓冲首地址
//sector:扇区地址
//count:需要读取的扇区数
DRESULT disk_read (
	BYTE pdrv,		/* Physical drive nmuber (0..) */
	BYTE *buff,		/* Data buffer to store read data */
	DWORD sector,	/* Sector address (LBA) */
	UINT count		/* Number of sectors to read (1..128) */
)
{
	u8 res=0; 
    if (!count)return RES_PARERR;//count不能等于0,否则返回参数错误		 	 
	switch(pdrv)
	{
		case SD_CARD://SD卡
			res=SD_ReadDisk(buff,sector,count);	 
			while(res)//读出错
			{
				SD_Init();	//重新初始化SD卡
				res=SD_ReadDisk(buff,sector,count);	
				//printf("sd rd error:%d\r\n",res);
			}
			break;
		case EX_FLASH://外部flash
			for(;count>0;count--)
			{
				W25QXX_Read(buff,sector*FLASH_SECTOR_SIZE,FLASH_SECTOR_SIZE);
				sector++;
				buff+=FLASH_SECTOR_SIZE;
			}
			res=0;
			break;
		default:
			res=1; 
	}
   //处理返回值,将SPI_SD_driver.c的返回值转成ff.c的返回值
    if(res==0x00)return RES_OK;	 
    else return RES_ERROR;	   
}

//写扇区
//drv:磁盘编号0~9
//*buff:发送数据首地址
//sector:扇区地址
//count:需要写入的扇区数
#if _USE_WRITE
DRESULT disk_write (
	BYTE pdrv,			/* Physical drive nmuber (0..) */
	const BYTE *buff,	/* Data to be written */
	DWORD sector,		/* Sector address (LBA) */
	UINT count			/* Number of sectors to write (1..128) */
)
{
	u8 res=0;  
    if (!count)return RES_PARERR;//count不能等于0,否则返回参数错误		 	 
	switch(pdrv)
	{
		case SD_CARD://SD卡
			res=SD_WriteDisk((u8*)buff,sector,count);
			while(res)//写出错
			{
				SD_Init();	//重新初始化SD卡
				res=SD_WriteDisk((u8*)buff,sector,count);	
				//printf("sd wr error:%d\r\n",res);
			}
			break;
		case EX_FLASH://外部flash
			for(;count>0;count--)
			{										    
				W25QXX_Write((u8*)buff,sector*FLASH_SECTOR_SIZE,FLASH_SECTOR_SIZE);
				sector++;
				buff+=FLASH_SECTOR_SIZE;
			}
			res=0;
			break;
		default:
			res=1; 
	}
    //处理返回值,将SPI_SD_driver.c的返回值转成ff.c的返回值
    if(res == 0x00)return RES_OK;	 
    else return RES_ERROR;	
}
#endif


//其他表参数的获得
 //drv:磁盘编号0~9
 //ctrl:控制代码
 //*buff:发送/接收缓冲区指针
#if _USE_IOCTL
DRESULT disk_ioctl (
	BYTE pdrv,		/* Physical drive nmuber (0..) */
	BYTE cmd,		/* Control code */
	void *buff		/* Buffer to send/receive control data */
)
{
	DRESULT res;						  			     
	if(pdrv==SD_CARD)//SD卡
	{
	    switch(cmd)
	    {
		    case CTRL_SYNC:
				res = RES_OK; 
		        break;	 
		    case GET_SECTOR_SIZE:
				*(DWORD*)buff = 512; 
		        res = RES_OK;
		        break;	 
		    case GET_BLOCK_SIZE:
				*(WORD*)buff = SDCardInfo.CardBlockSize;
		        res = RES_OK;
		        break;	 
		    case GET_SECTOR_COUNT:
		        *(DWORD*)buff = SDCardInfo.CardCapacity/512;
		        res = RES_OK;
		        break;
		    default:
		        res = RES_PARERR;
		        break;
	    }
	}else if(pdrv==EX_FLASH)	//外部FLASH  
	{
	    switch(cmd)
	    {
		    case CTRL_SYNC:
				res = RES_OK; 
		        break;	 
		    case GET_SECTOR_SIZE:
		        *(WORD*)buff = FLASH_SECTOR_SIZE;
		        res = RES_OK;
		        break;	 
		    case GET_BLOCK_SIZE:
		        *(WORD*)buff = FLASH_BLOCK_SIZE;
		        res = RES_OK;
		        break;	 
		    case GET_SECTOR_COUNT:
		        *(DWORD*)buff = FLASH_SECTOR_COUNT;
		        res = RES_OK;
		        break;
		    default:
		        res = RES_PARERR;
		        break;
	    }
	}else res=RES_ERROR;//其他的不支持
    return res;
}
#endif
//获得时间
//User defined function to give a current time to fatfs module      */
//31-25: Year(0-127 org.1980), 24-21: Month(1-12), 20-16: Day(1-31) */                                                                                                                                                                                                                                          
//15-11: Hour(0-23), 10-5: Minute(0-59), 4-0: Second(0-29 *2) */                                                                                                                                                                                                                                                
DWORD get_fattime (void)
{				 
	return 0;
}			 
//动态分配内存
void *ff_memalloc (UINT size)			
{
	return (void*)mymalloc(SRAMIN,size);
}
//释放内存
void ff_memfree (void* mf)		 
{
	myfree(SRAMIN,mf);
}


ffconf.h配置

/*---------------------------------------------------------------------------/
/  FatFs - FAT file system module configuration file  R0.10b (C)ChaN, 2014
/---------------------------------------------------------------------------*/

#ifndef _FFCONF
#define _FFCONF 8051	/* Revision ID */


/*---------------------------------------------------------------------------/
/ Functions and Buffer Configurations
/---------------------------------------------------------------------------*/

#define	_FS_TINY		0	/* 0:Normal or 1:Tiny */
/* When _FS_TINY is set to 1, it reduces memory consumption _MAX_SS bytes each
/  file object. For file data transfer, FatFs uses the common sector buffer in
/  the file system object (FATFS) instead of private sector buffer eliminated
/  from the file object (FIL). */


#define _FS_READONLY	0	/* 0:Read/Write or 1:Read only */
/* Setting _FS_READONLY to 1 defines read only configuration. This removes
/  writing functions, f_write(), f_sync(), f_unlink(), f_mkdir(), f_chmod(),
/  f_rename(), f_truncate() and useless f_getfree(). */


#define _FS_MINIMIZE	0	/* 0 to 3 */
/* The _FS_MINIMIZE option defines minimization level to remove API functions.
/
/   0: All basic functions are enabled.
/   1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_chmod(), f_utime(),
/      f_truncate() and f_rename() function are removed.
/   2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/   3: f_lseek() function is removed in addition to 2. */


#define	_USE_STRFUNC	1	/* 0:Disable or 1-2:Enable */
/* To enable string functions, set _USE_STRFUNC to 1 or 2. */


#define	_USE_MKFS		1	/* 0:Disable or 1:Enable */
/* To enable f_mkfs() function, set _USE_MKFS to 1 and set _FS_READONLY to 0 */


#define	_USE_FASTSEEK	1	/* 0:Disable or 1:Enable */
/* To enable fast seek feature, set _USE_FASTSEEK to 1. */


#define _USE_LABEL		1	/* 0:Disable or 1:Enable */
/* To enable volume label functions, set _USE_LAVEL to 1 */


#define	_USE_FORWARD	0	/* 0:Disable or 1:Enable */
/* To enable f_forward() function, set _USE_FORWARD to 1 and set _FS_TINY to 1. */


/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/

#define _CODE_PAGE	936		//采用中文GBK编码
/* The _CODE_PAGE specifies the OEM code page to be used on the target system.
/  Incorrect setting of the code page can cause a file open failure.
/
/   932  - Japanese Shift_JIS (DBCS, OEM, Windows)
/   936  - Simplified Chinese GBK (DBCS, OEM, Windows)
/   949  - Korean (DBCS, OEM, Windows)
/   950  - Traditional Chinese Big5 (DBCS, OEM, Windows)
/   1250 - Central Europe (Windows)
/   1251 - Cyrillic (Windows)
/   1252 - Latin 1 (Windows)
/   1253 - Greek (Windows)
/   1254 - Turkish (Windows)
/   1255 - Hebrew (Windows)
/   1256 - Arabic (Windows)
/   1257 - Baltic (Windows)
/   1258 - Vietnam (OEM, Windows)
/   437  - U.S. (OEM)
/   720  - Arabic (OEM)
/   737  - Greek (OEM)
/   775  - Baltic (OEM)
/   850  - Multilingual Latin 1 (OEM)
/   858  - Multilingual Latin 1 + Euro (OEM)
/   852  - Latin 2 (OEM)
/   855  - Cyrillic (OEM)
/   866  - Russian (OEM)
/   857  - Turkish (OEM)
/   862  - Hebrew (OEM)
/   874  - Thai (OEM, Windows)
/   1    - ASCII (Valid for only non-LFN configuration) */


#define	_USE_LFN	3		/* 0 to 3 */
#define	_MAX_LFN	255		/* Maximum LFN length to handle (12 to 255) */
/* The _USE_LFN option switches the LFN feature.
/
/   0: Disable LFN feature. _MAX_LFN has no effect.
/   1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/   2: Enable LFN with dynamic working buffer on the STACK.
/   3: Enable LFN with dynamic working buffer on the HEAP.
/
/  When enable LFN feature, Unicode handling functions ff_convert() and ff_wtoupper()
/  function must be added to the project.
/  The LFN working buffer occupies (_MAX_LFN + 1) * 2 bytes. When use stack for the
/  working buffer, take care on stack overflow. When use heap memory for the working
/  buffer, memory management functions, ff_memalloc() and ff_memfree(), must be added
/  to the project. */


#define	_LFN_UNICODE	0	/* 0:ANSI/OEM or 1:Unicode */
/* To switch the character encoding on the FatFs API (TCHAR) to Unicode, enable LFN
/  feature and set _LFN_UNICODE to 1. This option affects behavior of string I/O
/  functions. This option must be 0 when LFN feature is not enabled. */


#define _STRF_ENCODE	3	/* 0:ANSI/OEM, 1:UTF-16LE, 2:UTF-16BE, 3:UTF-8 */
/* When Unicode API is enabled by _LFN_UNICODE option, this option selects the character
/  encoding on the file to be read/written via string I/O functions, f_gets(), f_putc(),
/  f_puts and f_printf(). This option has no effect when _LFN_UNICODE == 0. Note that
/  FatFs supports only BMP. */


#define _FS_RPATH		0	/* 0 to 2 */
/* The _FS_RPATH option configures relative path feature.
/
/   0: Disable relative path feature and remove related functions.
/   1: Enable relative path. f_chdrive() and f_chdir() function are available.
/   2: f_getcwd() function is available in addition to 1.
/
/  Note that output of the f_readdir() fnction is affected by this option. */


/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/

#define _VOLUMES	3 	//支持3个磁盘
/* Number of volumes (logical drives) to be used. */


#define _STR_VOLUME_ID	0	/* 0:Use only 0-9 for drive ID, 1:Use strings for drive ID */
#define _VOLUME_STRS	"RAM","NAND","CF","SD1","SD2","USB1","USB2","USB3"
/* When _STR_VOLUME_ID is set to 1, also pre-defined strings can be used as drive
/  number in the path name. _VOLUME_STRS defines the drive ID strings for each logical
/  drives. Number of items must be equal to _VOLUMES. Valid characters for the drive ID
/  strings are: 0-9 and A-Z. */


#define	_MULTI_PARTITION	0	/* 0:Single partition, 1:Enable multiple partition */
/* By default(0), each logical drive number is bound to the same physical drive number
/  and only a FAT volume found on the physical drive is mounted. When it is set to 1,
/  each logical drive number is bound to arbitrary drive/partition listed in VolToPart[].
*/


#define	_MIN_SS		512
#define	_MAX_SS		512
/* These options configure the range of sector size to be supported. (512, 1024, 2048 or
/  4096) Always set both 512 for most systems, all memory card and harddisk. But a larger
/  value may be required for on-board flash memory and some type of optical media.
/  When _MAX_SS is larger than _MIN_SS, FatFs is configured to variable sector size and
/  GET_SECTOR_SIZE command must be implemented to the disk_ioctl() function. */


#define	_USE_ERASE	0	/* 0:Disable or 1:Enable */
/* To enable sector erase feature, set _USE_ERASE to 1. Also CTRL_ERASE_SECTOR command
/  should be added to the disk_ioctl() function. */


#define _FS_NOFSINFO	0	/* 0 to 3 */
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this option
/  and f_getfree() function at first time after volume mount will force a full FAT scan.
/  Bit 1 controls the last allocated cluster number as bit 0.
/
/  bit0=0: Use free cluster count in the FSINFO if available.
/  bit0=1: Do not trust free cluster count in the FSINFO.
/  bit1=0: Use last allocated cluster number in the FSINFO if available.
/  bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/



/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/

#define	_FS_LOCK	0	/* 0:Disable or >=1:Enable */
/* To enable file lock control feature, set _FS_LOCK to non-zero value.
/  The value defines how many files/sub-directories can be opened simultaneously
/  with file lock control. This feature uses bss _FS_LOCK * 12 bytes. */


#define _FS_REENTRANT	0		/* 0:Disable or 1:Enable */
#define _FS_TIMEOUT		1000	/* Timeout period in unit of time tick */
#define	_SYNC_t			HANDLE	/* O/S dependent sync object type. e.g. HANDLE, OS_EVENT*, ID, SemaphoreHandle_t and etc.. */
/* The _FS_REENTRANT option switches the re-entrancy (thread safe) of the FatFs module.
/
/   0: Disable re-entrancy. _FS_TIMEOUT and _SYNC_t have no effect.
/   1: Enable re-entrancy. Also user provided synchronization handlers,
/      ff_req_grant(), ff_rel_grant(), ff_del_syncobj() and ff_cre_syncobj()
/      function must be added to the project.
*/


#define _WORD_ACCESS	0	/* 0 or 1 */
/* The _WORD_ACCESS option is an only platform dependent option. It defines
/  which access method is used to the word data on the FAT volume.
/
/   0: Byte-by-byte access. Always compatible with all platforms.
/   1: Word access. Do not choose this unless under both the following conditions.
/
/  * Address misaligned memory access is always allowed for ALL instructions.
/  * Byte order on the memory is little-endian.
/
/  If it is the case, _WORD_ACCESS can also be set to 1 to improve performance and
/  reduce code size. Following table shows an example of some processor types.
/
/   ARM7TDMI    0           ColdFire    0           V850E       0
/   Cortex-M3   0           Z80         0/1         V850ES      0/1
/   Cortex-M0   0           RX600(LE)   0/1         TLCS-870    0/1
/   AVR         0/1         RX600(BE)   0           TLCS-900    0/1
/   AVR32       0           RL78        0           R32C        0
/   PIC18       0/1         SH-2        0           M16C        0/1
/   PIC24       0           H8S         0           MSP430      0
/   PIC32       0           H8/300H     0           x86         0/1
*/


#endif /* _FFCONF */

    可以看出我使用了Normal FATFS、可以读写、保留了全部函数、使能了字符串操作、使能了格式化操作、使能了快速定位、支持磁盘盘符的设置和读取、设置语言936-中文GBK编码、支持长文件名且最大长度255、支持的逻辑设备数目为3、扇区缓冲最大值最小值都为512

    FATFS给用户提供了大量的API函数,可以满足我们对文件的各种操作。

  FATFS文件系统学习笔记_第3张图片

 FATFS文件系统学习笔记_第4张图片

FATFS文件系统学习笔记_第5张图片

    在官网有详细的使用指南,看着使用指南再对照源码就会基本掌握函数的使用。

   几个重要结构体
        文件对象结构体(FIL类型):存放文件的相关信息,打开关闭读写文件等操作时需要使用其指针
        目录对象结构体(DIR类型):存放目录的相关信息,对目录操作时需要其指针
        文件状态结构体(FILINFO类型):存放文件的大小属性文件名等信息
        文件系统对象结构体(FATFS类型):暂时没见怎么用过

    文件的属性宏定义(用在打开时):
        可以使用或运算符使得该文件具有多种性质,注意在读写时一定要以相应的属性打开文件
    文件夹文件属性宏定义:
        可以使用或运算符使得该文件具有多种性质,提供了函数可以修改文件的属性
    注意:传参时的path(路径)应为一个字符串,是要操作的文件的完整路径,根目录0表示SD 卡,1表示外部SRAM
        要注意数据类型的统一,在integer.h中定义的文件系统所用到的数据类型
        大部分函数若执行成功返回0,若失败会返回一个错误码,该错误码为枚举类型(FRESULT)中的成员,在调试时打印错误码会事半功倍

你可能感兴趣的:(STM32,STM32)