hive hbase整合,要求比较多,1.hive的得是0.6.0(当前最新的版本)
2.hive本身要求hadoop的最高版本是hadoop-0.20.2
3.要求hbase的版本是0.20.3,其他版本需要重新编译hive_hbase-handler
但是新版的hbase(0.90)变动特别大,根本无法从编译。这点比较恶心,hbase目前升级比较快,当前是0.90(从0.20.6直接跳到0.89),至于为什么这样跳跃,参考官方的解释http://wiki.apache.org/hadoop/Hbase/HBaseVersions
开场白:
Hive与HBase的整合功能的实现是利用两者本身对外的API接口互相进行通信,相互通信主要是依靠hive_hbase-handler.jar工具类 (Hive Storage Handlers ), 大致意思如图所示:
1)启动Hbase,
要求hbase-0.20.3,zookeeper-3.2.2
如果使用的不是hbase-0.20.3需要重新编译hive_hbase-handler.jar
2)单节点HBase的连接
./bin/hive -hiveconf hbase.master=master:60000
3)集群HBase的连接
1.启动zookeeper
2.启动hbase
3.启动hive,添加zookeeper的支持
./bin/hive -hiveconf hbase.zookeeper.quorum= master,slave-A,slave-B
//所有的zookeeper节点
二、插入数据
启动
./bin/hive --auxpath /data/soft/hive/lib/hive_hbase-handler.jar,/data/soft/hive/lib/hbase-0.20.3.jar,/data/soft/hive/lib/zookeeper-3.2.2.jar -hiveconf hbase.zookeeper.quorum=slave-001,slave-002,slave-003
hive
1.创建hbase识别的数据库
CREATE TABLE hbase_table_1(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")
TBLPROPERTIES ("hbase.table.name" = "xyz");
hbase.table.name 定义在hbase的table名称
hbase.columns.mapping 定义在hbase的列族
2.使用sql导入数据
i.预先准备数据
a)新建hive的数据表
CREATE TABLE pokes (foo INT, bar STRING);
b)批量插入数据
hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE pokes;
这个文件位于hive的安装目录下,examples/files/kv1.txt
ii.使用sql导入hbase_table_1
INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86;
注意,默认的启动会报错的
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.ExecDriver
启动的时候要添加
-auxpath /data/soft/hive/lib/hive_hbase-handler.jar,/data/soft/hive/lib/hbase-0.20.3.jar,/data/soft/hive/lib/zookeeper-3.2.2.jar
3查看数据
hive> select * from hbase_table_1;
会显示刚刚插入的数据
86 val_86
hbase
1.登录hbase
[root@master hbase]# ./bin/hbase shell
2.查看表结构
hbase(main):001:0> describe 'xyz'
DESCRIPTION ENABLED
{NAME => 'xyz', FAMILIES => [{NAME => 'cf1', COMPRESSION => 'NONE', VE true
RSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_MEMORY =>
'false', BLOCKCACHE => 'true'}]}
1 row(s) in 0.7460 seconds
3.查看加载的数据
hbase(main):002:0> scan 'xyz'
ROW COLUMN+CELL
86 column=cf1:val, timestamp=1297690405634, value=val_86
1 row(s) in 0.0540 seconds
可以看到,在hive中添加的数据86,已经在hbase中了
4.添加数据
' hbase(main):008:0> put 'xyz','100','cf1:val','www.360buy.com'
0 row(s) in 0.0630 seconds
Hive
参看hive中的数据
hive> select * from hbase_table_1;
OK
100 www.360buy.com
86 val_86
Time taken: 8.661 seconds
刚刚在hbase中插入的数据,已经在hive里了
hive访问已经存在的hbase
使用CREATE EXTERNAL TABLE
CREATE EXTERNAL TABLE hbase_table_2(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")
TBLPROPERTIES("hbase.table.name" = "some_existing_table");
三、多列和多列族(Multiple Columns and Families)
1.创建数据库
CREATE TABLE hbase_table_2(key int, value1 string, value2 int, value3 int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = ":key,a:b,a:c,d:e"
);
2.插入数据
INSERT OVERWRITE TABLE hbase_table_2 SELECT foo, bar, foo+1, foo+2
FROM pokes WHERE foo=98 OR foo=100;
这个有3个hive的列(value1和value2,value3),2个hbase的列族(a,d)
Hive的2列(value1和value2)对应1个hbase的列族(a,在hbase的列名称b,c),hive的另外1列(value3)对应列(e)位于列族(d)
3.登录hbase查看结构
hbase(main):003:0> describe "hbase_table_2"
DESCRIPTION ENABLED
{NAME => 'hbase_table_2', FAMILIES => [{NAME => 'a', COMPRESSION => 'N true
ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M
EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>
'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN
_MEMORY => 'false', BLOCKCACHE => 'true'}]}
1 row(s) in 1.0630 seconds
4.查看hbase的数据
hbase(main):004:0> scan 'hbase_table_2'
ROW COLUMN+CELL
100 column=a:b, timestamp=1297695262015, value=val_100
100 column=a:c, timestamp=1297695262015, value=101
100 column=d:e, timestamp=1297695262015, value=102
98 column=a:b, timestamp=1297695242675, value=val_98
98 column=a:c, timestamp=1297695242675, value=99
98 column=d:e, timestamp=1297695242675, value=100
2 row(s) in 0.0380 seconds
5.在hive中查看
hive> select * from hbase_table_2;
OK
100 val_100 101 102
98 val_98 99 100
Time taken: 3.238 seconds
用hbase做数据库,但由于hbase没有类sql查询方式,所以操作和计算数据非常不方便,于是整合hive,让hive支撑在hbase数据库层面 的 hql查询.hive也即 做数据仓库
1. 基于Hadoop+Hive架构对海量数据进行查询:http://blog.csdn.net/kunshan_shenbin/article/details/7105319
2. HBase 0.90.5 + Hadoop 1.0.0 集成:http://blog.csdn.net/kunshan_shenbin/article/details/7209990
本文的目的是要讲述如何让Hbase和Hive能互相访问,让Hadoop/Hbase/Hive协同工作,合为一体。
本文测试步骤主要参考自:http://running.iteye.com/blog/898399
当然,这边博文也是按照官网的步骤来的:http://wiki.apache.org/hadoop/Hive/HBaseIntegration
1. 拷贝hbase-0.90.5.jar和zookeeper-3.3.2.jar到hive/lib下。
注意:如何hive/lib下已经存在这两个文件的其他版本(例如zookeeper-3.3.1.jar),建议删除后使用hbase下的相关版本。
2. 修改hive/conf下hive-site.xml文件,在底部添加如下内容:
11 |
hive.querylog.location |
注意:如果hive-site.xml不存在则自行创建,或者把hive-default.xml.template文件改名后使用。
具体请参见:http://blog.csdn.net/kunshan_shenbin/article/details/7210020
3. 拷贝hbase-0.90.5.jar到所有hadoop节点(包括master)的hadoop/lib下。
4. 拷贝hbase/conf下的hbase-site.xml文件到所有hadoop节点(包括master)的hadoop/conf下。
注意,hbase-site.xml文件配置信息参照:http://blog.csdn.net/kunshan_shenbin/article/details/7209990
注意,如果3,4两步跳过的话,运行hive时很可能出现如下错误:
2 |
org.apache.hadoop.hbase.ZooKeeperConnectionException: HBase is able to connect to ZooKeeper but the connection closes immediately. |
3 |
This could be a sign that the server has too many connections ( 30 is the default ). Consider inspecting your ZK server logs for that error and |
4 |
then make sure you are reusing HBaseConfiguration as often as you can. See HTable's javadoc for more information. at org.apache.hadoop. |
5 |
hbase.zookeeper.ZooKeeperWatcher. |
参考:http://blog.sina.com.cn/s/blog_410d18710100vlbq.html
现在可以尝试启动Hive了。
单节点启动:
1 |
> bin/hive -hiveconf hbase.master=master: 60000 |
集群启动:
1 |
> bin/hive -hiveconf hbase.zookeeper.quorum=slave |
如何hive-site.xml文件中没有配置hive.aux.jars.path,则可以按照如下方式启动。
1 |
> bin/hive --auxpath /usr/local/hive/lib/hive-hbase-handler- 0.8 . 0 .jar, /usr/local/hive/lib/hbase- 0.90 . 5 .jar, /usr/local/hive/lib/zookeeper- 3.3 . 2 .jar -hiveconf hbase.zookeeper.quorum=slave |
接下来可以做一些测试了。
1.创建hbase识别的数据库:
[sql] view plaincopy
CREATE TABLE hbase_table_1(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")
TBLPROPERTIES ("hbase.table.name" = "xyz");
hbase.table.name 定义在hbase的table名称
hbase.columns.mapping 定义在hbase的列族
2.使用sql导入数据
a) 新建hive的数据表
[sql] view plaincopy
hive> CREATE TABLE pokes (foo INT, bar STRING);
b) 批量插入数据
[sql] view plaincopy
1 |
hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE |
pokes;
c) 使用sql导入hbase_table_1
[sql] view plaincopy
hive> INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=86;
3. 查看数据
[sql] view plaincopy
hive> select * from hbase_table_1;
这时可以登录Hbase去查看数据了.
> /usr/local/hbase/bin/hbase shell
hbase(main):001:0> describe 'xyz'
hbase(main):002:0> scan 'xyz'
hbase(main):003:0> put 'xyz','100','cf1:val','www.360buy.com'
这时在Hive中可以看到刚才在Hbase中插入的数据了。
hive> select * from hbase_table_1
4. hive访问已经存在的hbase
使用CREATE EXTERNAL TABLE
[sql] view plaincopy
CREATE EXTERNAL TABLE hbase_table_2(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")
TBLPROPERTIES("hbase.table.name" = "some_existing_table");
多列和多列族(Multiple Columns and Families)
1.创建数据库
Java代码
CREATE TABLE hbase_table_2(key int, value1 string, value2 int, value3 int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = ":key,a:b,a:c,d:e"
);
2.插入数据
Java代码
INSERT OVERWRITE TABLE hbase_table_2 SELECT foo, bar, foo+1, foo+2
FROM pokes WHERE foo=98 OR foo=100;
这个有3个hive的列(value1和value2,value3),2个hbase的列族(a,d)
Hive的2列(value1和value2)对应1个hbase的列族(a,在hbase的列名称b,c),hive的另外1列(value3)对应列(e)位于列族(d)
3.登录hbase查看结构
Java代码
1 |
hbase(main): 003 : 0 > describe "hbase_table_2" |
3 |
{NAME => 'hbase_table_2' , FAMILIES => [{NAME => 'a' , COMPRESSION => 'N true |
4 |
ONE ', VERSIONS => ' 3 ', TTL => ' 2147483647 ', BLOCKSIZE => ' 65536 ', IN_M |
5 |
EMORY => 'false' , BLOCKCACHE => 'true' }, {NAME => 'd' , COMPRESSION => |
6 |
'NONE' , VERSIONS => '3' , TTL => '2147483647' , BLOCKSIZE => '65536' , IN |
7 |
_MEMORY => 'false' , BLOCKCACHE => 'true' }]} |
8 |
1 row(s) in 1.0630 seconds |
4.查看hbase的数据
Java代码
1 |
hbase(main): 004 : 0 > scan 'hbase_table_2' |
3 |
100 column=a:b, timestamp= 1297695262015 , value=val_100 |
4 |
100 column=a:c, timestamp= 1297695262015 , value= 101 |
5 |
100 column=d:e, timestamp= 1297695262015 , value= 102 |
6 |
98 column=a:b, timestamp= 1297695242675 , value=val_98 |
7 |
98 column=a:c, timestamp= 1297695242675 , value= 99 |
8 |
98 column=d:e, timestamp= 1297695242675 , value= 100 |
9 |
2 row(s) in 0.0380 seconds |
5.在hive中查看
Java代码
1 |
hive> select * from hbase_table_2; |
5 |
Time taken: 3.238 seconds |
参考资料:
http://running.iteye.com/blog/898399
http://heipark.iteye.com/blog/1150648
http://www.javabloger.com/article/apache-hadoop-hive-hbase-integration.html