java.util.LinkedList
package com.anxpp.thinkinjava.chapter11.sourse; import java.util.AbstractSequentialList; import java.util.Collection; import java.util.ConcurrentModificationException; import java.util.Deque; import java.util.Iterator; import java.util.List; import java.util.ListIterator; import java.util.NoSuchElementException; import java.util.Objects; import java.util.Spliterator; import java.util.Spliterators; import java.util.function.Consumer; /** * LinkedList底层使用双向链表,实现了List和deque。实现所有的可选List操作,并可以只有所有元素(包括空值) * 其大小理论上仅受内存大小的限制 * * 所有的操作都可以作为一个双联列表来执行(及对双向链表操作)。 * 把对链表的操作封装起来,并对外提供看起来是对普通列表操作的方法。 * 遍历从起点、终点、或指定位置开始 * 内部方法,注释会描述为节点的操作(如删除第一个节点),公开的方法会描述为元素的操作(如删除第一个元素) * * LinkedList不是线程安全的,如果在多线程中使用(修改),需要在外部作同步处理。 * * 需要弄清元素(节点)的索引和位置的区别,不然有几个地方不好理解,具体在碰到的地方会解释。 * * 迭代器可以快速报错 */ public class LinkedList* * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the list are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose. * @return an array containing the elements of the list * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this list * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), size); int i = 0; Object[] result = a; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; if (a.length > size) a[size] = null; return a; } private static final long serialVersionUID = 876323262645176354L; /** * Saves the state of this {@code LinkedList} instance to a stream * (that is, serializes it). * * @serialData The size of the list (the number of elements it * contains) is emitted (int), followed by all of its * elements (each an Object) in the proper order. */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden serialization magic s.defaultWriteObject(); // Write out size s.writeInt(size); // Write out all elements in the proper order. for (Node<E> x = first; x != null; x = x.next) s.writeObject(x.item); } /** * Reconstitutes this {@code LinkedList} instance from a stream * (that is, deserializes it). */ @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in any hidden serialization magic s.defaultReadObject(); // Read in size int size = s.readInt(); // Read in all elements in the proper order. for (int i = 0; i < size; i++) linkLast((E)s.readObject()); } /** * Creates a late-binding * and fail-fast {@link Spliterator} over the elements in this * list. * *extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, java.io.Serializable { //容量 transient int size = 0; //首节点 transient Node<E> first; //尾节点 transient Node<E> last; //默认构造函数 public LinkedList() { } //通过一个集合初始化LinkedList,元素顺序有这个集合的迭代器返回顺序决定 public LinkedList(Collection extends E> c) { this(); addAll(c); } //使用对应参数作为第一个节点,内部使用 private void linkFirst(E e) { final Node<E> f = first;//得到首节点 final Node<E> newNode = new Node<>(null, e, f);//创建一个节点 first = newNode; //设置首节点 if (f == null) last = newNode; //如果之前首节点为空(size==0),那么尾节点就是首节点 else f.prev = newNode; //如果之前首节点不为空,之前的首节点的前一个节点为当前首节点 size++; //长度+1 modCount++; //修改次数+1 } //使用对应参数作为尾节点 void linkLast(E e) { final Node<E> l = last; //得到尾节点 final Node<E> newNode = new Node<>(l, e, null);//使用参数创建一个节点 last = newNode; //设置尾节点 if (l == null) first = newNode; //如果之前尾节点为空(size==0),首节点即尾节点 else l.next = newNode; //如果之前尾节点不为空,之前的尾节点的后一个就是当前的尾节点 size++; modCount++; } //在指定节点前插入节点,节点succ不能为空 void linkBefore(E e, Node<E> succ) { final Node<E> pred = succ.prev;//获取前一个节点 final Node<E> newNode = new Node<>(pred, e, succ);//使用参数创建新的节点,向前指向前一个节点,向后指向当前节点 succ.prev = newNode;//当前节点指向新的节点 if (pred == null) first = newNode;//如果前一个节点为null,新的节点就是首节点 else pred.next = newNode;//如果存在前节点,那么前节点的向后指向新节点 size++; modCount++; } //删除首节点并返回删除前首节点的值,内部使用 private E unlinkFirst(Node<E> f) { final E element = f.item;//获取首节点的值 final Node<E> next = f.next;//得到下一个节点 f.item = null; f.next = null; //便于垃圾回收期清理 first = next; //首节点的下一个节点成为新的首节点 if (next == null) last = null; //如果不存在下一个节点,则首尾都为null(空表) else next.prev = null;//如果存在下一个节点,那它向前指向null size--; modCount++; return element; } //删除尾节点并返回删除前尾节点的值,内部使用 private E unlinkLast(Node<E> l) { final E element = l.item;//获取值 final Node<E> prev = l.prev;//获取尾节点前一个节点 l.item = null; l.prev = null; //便于垃圾回收期清理 last = prev; //前一个节点成为新的尾节点 if (prev == null) first = null; //如果前一个节点不存在,则首尾都为null(空表) else prev.next = null;//如果前一个节点存在,先后指向null size--; modCount++; return element; } //删除指定节点并返回被删除的元素值 E unlink(Node<E> x) { //获取当前值和前后节点 final E element = x.item; final Node<E> next = x.next; final Node<E> prev = x.prev; if (prev == null) { first = next; //如果前一个节点为空(如当前节点为首节点),后一个节点成为新的首节点 } else { prev.next = next;//如果前一个节点不为空,那么他先后指向当前的下一个节点 x.prev = null; //方便gc回收 } if (next == null) { last = prev; //如果后一个节点为空(如当前节点为尾节点),当前节点前一个成为新的尾节点 } else { next.prev = prev;//如果后一个节点不为空,后一个节点向前指向当前的前一个节点 x.next = null; //方便gc回收 } x.item = null; //方便gc回收 size--; modCount++; return element; } //获取第一个元素 public E getFirst() { final Node<E> f = first;//得到首节点 if (f == null) //如果为空,抛出异常 throw new NoSuchElementException(); return f.item; } //获取最后一个元素 public E getLast() { final Node<E> l = last;//得到尾节点 if (l == null) //如果为空,抛出异常 throw new NoSuchElementException(); return l.item; } //删除第一个元素并返回删除的元素 public E removeFirst() { final Node<E> f = first;//得到第一个节点 if (f == null) //如果为空,抛出异常 throw new NoSuchElementException(); return unlinkFirst(f); } //删除最后一个元素并返回删除的值 public E removeLast() { final Node<E> l = last;//得到最后一个节点 if (l == null) //如果为空,抛出异常 throw new NoSuchElementException(); return unlinkLast(l); } //添加元素作为第一个元素 public void addFirst(E e) { linkFirst(e); } //店家元素作为最后一个元素 public void addLast(E e) { linkLast(e); } //检查是否包含某个元素,返回bool public boolean contains(Object o) { return indexOf(o) != -1;//返回指定元素的索引位置,不存在就返回-1,然后比较返回bool值 } //返回列表长度 public int size() { return size; } //添加一个元素,默认添加到末尾作为最后一个元素 public boolean add(E e) { linkLast(e); return true; } //删除指定元素,默认从first节点开始,删除第一次出现的那个元素 public boolean remove(Object o) { //会根据是否为null分开处理。若值不是null,会用到对象的equals()方法 if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } //添加指定集合的元素到列表,默认从最后开始添加 public boolean addAll(Collection extends E> c) { return addAll(size, c);//size表示最后一个位置,可以理解为元素的位置分别为1~size } //从指定位置(而不是下标!下标即索引从0开始,位置可以看做从1开始,其实也是0)后面添加指定集合的元素到列表中,只要有至少一次添加就会返回true //index换成position应该会更好理解,所以也就是从索引为index(position)的元素的前面索引为index-1的后面添加! //当然位置可以为0啊,为0的时候就是从位置0(虽然它不存在)后面开始添加嘛,所以理所当前就是添加到第一个位置(位置1的前面)的前面了啊! //比如列表:0 1 2 3,如果此处index=4(实际索引为3),就是在元素3后面添加;如果index=3(实际索引为2),就在元素2后面添加。 //原谅我的表达水平,我已经尽力解释了... public boolean addAll(int index, Collection extends E> c) { checkPositionIndex(index); //检查索引是否正确(0<=index<=size) Object[] a = c.toArray(); //得到元素数组 int numNew = a.length; //得到元素个数 if (numNew == 0) //若没有元素要添加,直接返回false return false; Node<E> pred, succ; if (index == size) { //如果是在末尾开始添加,当前节点后一个节点初始化为null,前一个节点为尾节点 succ = null; //这里可以看做node(index),不过index=size了(index最大只能是size-1),所以这里的succ只能=null,也方便后面判断 pred = last; //这里看做noede(index-1),当然实现是不能这么写的,看做这样只是为了好理解,所以就是在node(index-1的后面开始添加元素) } else { //如果不是从末尾开始添加,当前位置的节点为指定位置的节点,前一个节点为要添加的节点的前一个节点 succ = node(index); //添加好元素后(整个新加的)的后一个节点 pred = succ.prev; //这里依然是node(index-1) } //遍历数组并添加到列表中 for (Object o : a) { @SuppressWarnings("unchecked") E e = (E) o; Node<E> newNode = new Node<>(pred, e, null);//创建一个节点,向前指向上面得到的前节点 if (pred == null) first = newNode; //若果前节点为null,则新加的节点为首节点 else pred.next = newNode;//如果存在前节点,前节点会向后指向新加的节点 pred = newNode; //新加的节点成为前一个节点 } if (succ == null) { //pred.next = null //加上这句也可以更好的理解 last = pred; //如果是从最后开始添加的,则最后添加的节点成为尾节点 } else { pred.next = succ; //如果不是从最后开始添加的,则最后添加的节点向后指向之前得到的后续第一个节点 succ.prev = pred; //当前,后续的第一个节点也应改为向前指向最后一个添加的节点 } size += numNew; modCount++; return true; } //清空表 public void clear() { //方便gc回收垃圾 for (Node<E> x = first; x != null; ) { Node<E> next = x.next; x.item = null; x.next = null; x.prev = null; x = next; } first = last = null; size = 0; modCount++; } //获取指定索引的节点的值 public E get(int index) { checkElementIndex(index); return node(index).item; } //修改指定索引的值并返回之前的值 public E set(int index, E element) { checkElementIndex(index); Node<E> x = node(index); E oldVal = x.item; x.item = element; return oldVal; } //指定位置后面(即索引为这个值的元素的前面)添加元素 public void add(int index, E element) { checkPositionIndex(index); if (index == size) linkLast(element); //如果指定位置为最后,则添加到链表最后 else //如果指定位置不是最后,则添加到指定位置前 linkBefore(element, node(index)); } //删除指定位置的元素, public E remove(int index) { checkElementIndex(index); return unlink(node(index)); } //检查索引是否超出范围,因为元素索引是0~size-1的,所以index必须满足0<=index private boolean isElementIndex(int index) { return index >= 0 && index < size; } //检查位置是否超出范围,index必须在index~size之间(含),如果超出,返回false private boolean isPositionIndex(int index) { return index >= 0 && index <= size; } //异常详情 private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } //检查元素索引是否超出范围,若已超出,就抛出异常 private void checkElementIndex(int index) { if (!isElementIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //检查位置是否超出范围,若已超出,就抛出异常 private void checkPositionIndex(int index) { if (!isPositionIndex(index)) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } //获取指定位置的节点 Node<E> node(int index) { //如果位置索引小于列表长度的一半(或一半减一),从前面开始遍历;否则,从后面开始遍历 if (index < (size >> 1)) { Node<E> x = first;//index==0时不会循环,直接返回first for (int i = 0; i < index; i++) x = x.next; return x; } else { Node<E> x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; } } //获取指定元素从first开始的索引位置,不存在就返回-1 //不能按条件双向找了,所以通常根据索引获得元素的速度比通过元素获得索引的速度快 public int indexOf(Object o) { int index = 0; if (o == null) { for (Node<E> x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { for (Node<E> x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1; } //获取指定元素从first开始最后出现的索引,不存在就返回-1 //但实际查找是从last开始的 public int lastIndexOf(Object o) { int index = size; if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { index--; if (x.item == null) return index; } } else { for (Node<E> x = last; x != null; x = x.prev) { index--; if (o.equals(x.item)) return index; } } return -1; } //提供普通队列和双向队列的功能,当然,也可以实现栈,FIFO,FILO //出队(从前端),获得第一个元素,不存在会返回null,不会删除元素(节点) public E peek() { final Node<E> f = first; return (f == null) ? null : f.item; } //出队(从前端),不删除元素,若为null会抛出异常而不是返回null public E element() { return getFirst(); } //出队(从前端),如果不存在会返回null,存在的话会返回值并移除这个元素(节点) public E poll() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } //出队(从前端),如果不存在会抛出异常而不是返回null,存在的话会返回值并移除这个元素(节点) public E remove() { return removeFirst(); } //入队(从后端),始终返回true public boolean offer(E e) { return add(e); } //入队(从前端),始终返回true public boolean offerFirst(E e) { addFirst(e); return true; } //入队(从后端),始终返回true public boolean offerLast(E e) { addLast(e);//linkLast(e) return true; } //出队(从前端),获得第一个元素,不存在会返回null,不会删除元素(节点) public E peekFirst() { final Node<E> f = first; return (f == null) ? null : f.item; } //出队(从后端),获得最后一个元素,不存在会返回null,不会删除元素(节点) public E peekLast() { final Node<E> l = last; return (l == null) ? null : l.item; } //出队(从前端),获得第一个元素,不存在会返回null,会删除元素(节点) public E pollFirst() { final Node<E> f = first; return (f == null) ? null : unlinkFirst(f); } //出队(从后端),获得最后一个元素,不存在会返回null,会删除元素(节点) public E pollLast() { final Node<E> l = last; return (l == null) ? null : unlinkLast(l); } //入栈,从前面添加 public void push(E e) { addFirst(e); } //出栈,返回栈顶元素,从前面移除(会删除) public E pop() { return removeFirst(); } /** * Removes the first occurrence of the specified element in this * list (when traversing the list from head to tail). If the list * does not contain the element, it is unchanged. * * @param o element to be removed from this list, if present * @return {@code true} if the list contained the specified element * @since 1.6 */ public boolean removeFirstOccurrence(Object o) { return remove(o); } /** * Removes the last occurrence of the specified element in this * list (when traversing the list from head to tail). If the list * does not contain the element, it is unchanged. * * @param o element to be removed from this list, if present * @return {@code true} if the list contained the specified element * @since 1.6 */ public boolean removeLastOccurrence(Object o) { if (o == null) { for (Node<E> x = last; x != null; x = x.prev) { if (x.item == null) { unlink(x); return true; } } } else { for (Node<E> x = last; x != null; x = x.prev) { if (o.equals(x.item)) { unlink(x); return true; } } } return false; } /** * Returns a list-iterator of the elements in this list (in proper * sequence), starting at the specified position in the list. * Obeys the general contract of {@code List.listIterator(int)}. * * The list-iterator is fail-fast: if the list is structurally * modified at any time after the Iterator is created, in any way except * through the list-iterator's own {@code remove} or {@code add} * methods, the list-iterator will throw a * {@code ConcurrentModificationException}. Thus, in the face of * concurrent modification, the iterator fails quickly and cleanly, rather * than risking arbitrary, non-deterministic behavior at an undetermined * time in the future. * * @param index index of the first element to be returned from the * list-iterator (by a call to {@code next}) * @return a ListIterator of the elements in this list (in proper * sequence), starting at the specified position in the list * @throws IndexOutOfBoundsException {@inheritDoc} * @see List#listIterator(int) */ public ListIterator<E> listIterator(int index) { checkPositionIndex(index); return new ListItr(index); } private class ListItr implements ListIterator<E> { private Node<E> lastReturned; private Node<E> next; private int nextIndex; private int expectedModCount = modCount; ListItr(int index) { // assert isPositionIndex(index); next = (index == size) ? null : node(index); nextIndex = index; } public boolean hasNext() { return nextIndex < size; } public E next() { checkForComodification(); if (!hasNext()) throw new NoSuchElementException(); lastReturned = next; next = next.next; nextIndex++; return lastReturned.item; } public boolean hasPrevious() { return nextIndex > 0; } public E previous() { checkForComodification(); if (!hasPrevious()) throw new NoSuchElementException(); lastReturned = next = (next == null) ? last : next.prev; nextIndex--; return lastReturned.item; } public int nextIndex() { return nextIndex; } public int previousIndex() { return nextIndex - 1; } public void remove() { checkForComodification(); if (lastReturned == null) throw new IllegalStateException(); Node<E> lastNext = lastReturned.next; unlink(lastReturned); if (next == lastReturned) next = lastNext; else nextIndex--; lastReturned = null; expectedModCount++; } public void set(E e) { if (lastReturned == null) throw new IllegalStateException(); checkForComodification(); lastReturned.item = e; } public void add(E e) { checkForComodification(); lastReturned = null; if (next == null) linkLast(e); else linkBefore(e, next); nextIndex++; expectedModCount++; } public void forEachRemaining(Consumer super E> action) { Objects.requireNonNull(action); while (modCount == expectedModCount && nextIndex < size) { action.accept(next.item); lastReturned = next; next = next.next; nextIndex++; } checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } //节点的数据结构,包含前后节点的引用和当前节点 private static class Node { E item; Node<E> next; Node<E> prev; Node(Node<E> prev, E element, Node<E> next) { this.item = element; this.next = next; this.prev = prev; } } //返回迭代器 public Iterator<E> descendingIterator() { return new DescendingIterator(); } //因为采用链表实现,所以迭代器很简单 private class DescendingIterator implements Iterator<E> { private final ListItr itr = new ListItr(size()); public boolean hasNext() { return itr.hasPrevious(); } public E next() { return itr.previous(); } public void remove() { itr.remove(); } } @SuppressWarnings("unchecked") private LinkedList<E> superClone() { try { return (LinkedList<E>) super.clone(); } catch (CloneNotSupportedException e) { throw new InternalError(e); } } /** * Returns a shallow copy of this {@code LinkedList}. (The elements * themselves are not cloned.) * * @return a shallow copy of this {@code LinkedList} instance */ public Object clone() { LinkedList<E> clone = superClone(); // Put clone into "virgin" state clone.first = clone.last = null; clone.size = 0; clone.modCount = 0; // Initialize clone with our elements for (Node<E> x = first; x != null; x = x.next) clone.add(x.item); return clone; } /** * Returns an array containing all of the elements in this list * in proper sequence (from first to last element). * * The returned array will be "safe" in that no references to it are
* maintained by this list. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * *This method acts as bridge between array-based and collection-based
* APIs. * * @return an array containing all of the elements in this list * in proper sequence */ public Object[] toArray() { Object[] result = new Object[size]; int i = 0; for (Node<E> x = first; x != null; x = x.next) result[i++] = x.item; return result; } /** * Returns an array containing all of the elements in this list in * proper sequence (from first to last element); the runtime type of * the returned array is that of the specified array. If the list fits * in the specified array, it is returned therein. Otherwise, a new * array is allocated with the runtime type of the specified array and * the size of this list. * *If the list fits in the specified array with room to spare (i.e.,
* the array has more elements than the list), the element in the array * immediately following the end of the list is set to {@code null}. * (This is useful in determining the length of the list only if * the caller knows that the list does not contain any null elements.) * *Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * *Suppose {@code x} is a list known to contain only strings.
* The following code can be used to dump the list into a newly * allocated array of {@code String}: * * * String[] y = x.toArray(new String[0]);
The {@code Spliterator} reports {@link Spliterator#SIZED} and
* {@link Spliterator#ORDERED}. Overriding implementations should document * the reporting of additional characteristic values. * * @implNote * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED} * and implements {@code trySplit} to permit limited parallelism.. * * @return a {@code Spliterator} over the elements in this list * @since 1.8 */ @Override public Spliterator<E> spliterator() { return new LLSpliterator<E>(this, -1, 0); } /** A customized variant of Spliterators.IteratorSpliterator */ static final class LLSpliterator