降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程
正是因为在进行训练的时候,我们都是使用特征进行学习。如果特征本身存在问题或者特征之间相关性较强,对于算法学习预测会影响较大
数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。
sklearn.feature_selection
删除低方差的一些特征,前面讲过方差的意义。再结合方差的大小来考虑这个方式的角度。
- sklearn.feature_selection.VarianceThreshold(threshold = 0.0)
- 删除所有低方差特征
- Variance.fit_transform(X)
- X:numpy array格式的数据[n_samples,n_features]
- 返回值:训练集差异低于threshold的特征将被删除。默认值是保留所有非零方差特征,即删除所有样本中具有相同值的特征。
我们对某些股票的指标特征之间进行一个筛选
一共这些特征
pe_ratio,pb_ratio,market_cap,return_on_asset_net_profit,du_return_on_equity,ev,earnings_per_share,revenue,total_expense
index,pe_ratio,pb_ratio,market_cap,return_on_asset_net_profit,du_return_on_equity,ev,earnings_per_share,revenue,total_expense,date,return
0,000001.XSHE,5.9572,1.1818,85252550922.0,0.8008,14.9403,1211444855670.0,2.01,20701401000.0,10882540000.0,2012-01-31,0.027657228229937388
1,000002.XSHE,7.0289,1.588,84113358168.0,1.6463,7.8656,300252061695.0,0.326,29308369223.2,23783476901.2,2012-01-31,0.08235182370820669
2,000008.XSHE,-262.7461,7.0003,517045520.0,-0.5678,-0.5943,770517752.56,-0.006,11679829.03,12030080.04,2012-01-31,0.09978900335112327
3,000060.XSHE,16.476,3.7146,19680455995.0,5.6036,14.617,28009159184.6,0.35,9189386877.65,7935542726.05,2012-01-31,0.12159482758620697
4,000069.XSHE,12.5878,2.5616,41727214853.0,2.8729,10.9097,81247380359.0,0.271,8951453490.28,7091397989.13,2012-01-31,-0.0026808154146886697
分析
- 初始化VarianceThreshold,指定阀值方差
- 调用fit_transform
def var():
"""
删除所有低方差特征
:return:
"""
data = pd.read_csv("./data/factor_regression_data/factor_returns.csv")
# 删除方差小于1.0的列
var = VarianceThreshold(threshold=1.0)
data = var.fit_transform(data.iloc[:, 1:10])
return None
那么之间的相关系数怎么计算
最终计算:
= 0.9942
所以我们最终得出结论是广告投入费与月平均销售额之间有高度的正相关关系。
相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:
这个符号:|r|为r的绝对值, |-5| = 5
- from scipy.stats import pearsonr
- x : (N,) array_like
- y : (N,) array_like Returns: (Pearson’s correlation coefficient, p-value)
我们刚才的股票的这些指标进行相关性计算, 假设我们以
factor = ['pe_ratio','pb_ratio','market_cap','return_on_asset_net_profit','du_return_on_equity','ev','earnings_per_share','revenue','total_expense']
这些特征当中的两两进行计算,得出相关性高的一些特征
分析
- 两两特征之间进行相关性计算
data = pd.read_csv("./data/factor_regression_data/factor_returns.csv")
for i in range(len(factor)):
for j in range(i, len(factor)-1):
print("指标%s与指标%s之间的相关性大小为%f" % (factor[i], factor[j+1], pearsonr(data[factor[i]], data[factor[j+1]])[0]))
从中我们得出
我们也可以通过画图来观察结果
import matplotlib.pyplot as plt
plt.scatter(data['revenue'], data['total_expense'])
plt.show()
这两对指标之间的相关性较大,可以做之后的处理,比如合成这两个指标。