转载自:
http://blog.csdn.net/lxg0807/article/details/52960072#comments
训练数据和测试数据来自网盘:
https://pan.baidu.com/s/1jH7wyOY
https://pan.baidu.com/s/1slGlPgx
训练以上数据
# _*_coding:utf-8 _*_
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import fasttext
#训练模型
classifier = fasttext.supervised("news_fasttext_train.txt","news_fasttext.model",label_prefix="__label__")
进行测试:
# -*- coding:utf-8 -*-
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import fasttext
#load训练好的模型
classifier = fasttext.load_model('news_fasttext.model.bin', label_prefix='__label__')
result = classifier.test("news_fasttext_test.txt")
print result.precision
print result.recall
注意每次训练的模型都有不同,所以测试的结果大概是0.87~0.92左右
进行最终评价:
# -*- coding:utf-8 -*-
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import fasttext
#load训练好的模型
classifier = fasttext.load_model('news_fasttext.model.bin', label_prefix='__label__')
result = classifier.test("news_fasttext_test.txt")
print result.precision
print result.recall
labels_right = []
texts = []
with open("news_fasttext_test.txt") as fr:
lines = fr.readlines()
for line in lines:
labels_right.append(line.split("\t")[1].rstrip().replace("__label__",""))
texts.append(line.split("\t")[0].decode("utf-8"))
# print labels
# print texts
# break
labels_predict = [e[0] for e in classifier.predict(texts)] #预测输出结果为二维形式
# print labels_predict
text_labels = list(set(labels_right))
text_predict_labels = list(set(labels_predict))
print text_predict_labels
print text_labels
A = dict.fromkeys(text_labels,0) #预测正确的各个类的数目
B = dict.fromkeys(text_labels,0) #测试数据集中各个类的数目
C = dict.fromkeys(text_predict_labels,0) #预测结果中各个类的数目
for i in range(0,len(labels_right)):
B[labels_right[i]] += 1
C[labels_predict[i]] += 1
if labels_right[i] == labels_predict[i]:
A[labels_right[i]] += 1
print A
print B
print C
#计算准确率,召回率,F值
for key in B:
p = float(A[key]) / float(B[key])
r = float(A[key]) / float(C[key])
f = p * r * 2 / (p + r)
print "%s:\tp:%f\t%fr:\t%f" % (key,p,r,f)
之所以搞这么一出,是因为fasttext提供的p值(准确率)和r值(召回率)只是针对所有结果的,而不是针对各个类别分别进行计算p值(准确率)和r值(召回率)的,所以该作者自己写了计算方法。
输出结果:
[u'affairs', u'fashion', u'lottery', u'house', u'sports', u'game', u'economic', u'ent', u'edu', u'home', u'stock', u'constellation', u'science']
['affairs', 'fashion', 'house', 'sports', 'game', 'economic', 'ent', 'edu', 'home', 'stock', 'science']
{'science': 8921, 'affairs': 8544, 'fashion': 2148, 'house': 9572, 'sports': 9814, 'game': 9389, 'economic': 9492, 'ent': 9660, 'edu': 9671, 'home': 8027, 'stock': 8525}
{'science': 10000, 'affairs': 10000, 'fashion': 3369, 'house': 10000, 'sports': 10000, 'game': 10000, 'economic': 10000, 'ent': 10000, 'edu': 10000, 'home': 10000, 'stock': 10000}
{u'science': 10311, u'affairs': 8953, u'fashion': 2176, u'lottery': 28, u'house': 10502, u'sports': 10288, u'game': 10182, u'economic': 11087, u'ent': 10940, u'edu': 10991, u'home': 8171, u'constellation': 466, u'stock': 9274}
science: p:0.892100 0.865193r: 0.878440
affairs: p:0.854400 0.954317r: 0.901599
fashion: p:0.637578 0.987132r: 0.774752
house: p:0.957200 0.911445r: 0.933763
sports: p:0.981400 0.953927r: 0.967468
game: p:0.938900 0.922117r: 0.930433
economic: p:0.949200 0.856138r: 0.900270
ent: p:0.966000 0.882998r: 0.922636
edu: p:0.967100 0.879902r: 0.921443
home: p:0.802700 0.982377r: 0.883496
stock: p:0.852500 0.919237r: 0.884611