java容器类LinkedHashMap源码分析

java容器库内容多,其中性能比较高的属于散列,LinkedHashMap继承于HashMap,在其基础上增加了accessOrder,大量用于LRU算法的缓存实现。
下面先贴源码

public class LinkedHashMap<K,V>
    extends HashMap<K,V>
    implements Map<K,V>
{
  static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

    private static final long serialVersionUID = 3801124242820219131L;

    transient LinkedHashMap.Entry<K,V> head;

    transient LinkedHashMap.Entry<K,V> tail;

  
    final boolean accessOrder;

    // internal utilities

    // link at the end of list
    private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
        LinkedHashMap.Entry<K,V> last = tail;
        tail = p;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
    }

    // apply src's links to dst
    private void transferLinks(LinkedHashMap.Entry<K,V> src,
                               LinkedHashMap.Entry<K,V> dst) {
        LinkedHashMap.Entry<K,V> b = dst.before = src.before;
        LinkedHashMap.Entry<K,V> a = dst.after = src.after;
        if (b == null)
            head = dst;
        else
            b.after = dst;
        if (a == null)
            tail = dst;
        else
            a.before = dst;
    }
    void reinitialize() {
        super.reinitialize();
        head = tail = null;
    }

    Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
        LinkedHashMap.Entry<K,V> p =
            new LinkedHashMap.Entry<K,V>(hash, key, value, e);
        linkNodeLast(p);
        return p;
    }

    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        LinkedHashMap.Entry<K,V> t =
            new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }

    TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
        linkNodeLast(p);
        return p;
    }

    TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }

    void afterNodeRemoval(Node<K,V> e) { // unlink
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.before = p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a == null)
            tail = b;
        else
            a.before = b;
    }

    void afterNodeInsertion(boolean evict) { // possibly remove eldest
        LinkedHashMap.Entry<K,V> first;
        if (evict && (first = head) != null && removeEldestEntry(first)) {
            K key = first.key;
            removeNode(hash(key), key, null, false, true);
        }
    }

    void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMap.Entry<K,V> last;
        if (accessOrder && (last = tail) != e) {
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            if (b == null)
                head = a;
            else
                b.after = a;
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;
            ++modCount;
        }
    }

    void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
            s.writeObject(e.key);
            s.writeObject(e.value);
        }
    }


    public LinkedHashMap(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor);
        accessOrder = false;
    }

    public LinkedHashMap(int initialCapacity) {
        super(initialCapacity);
        accessOrder = false;
    }

    public LinkedHashMap() {
        super();
        accessOrder = false;
    }


    public LinkedHashMap(Map<? extends K, ? extends V> m) {
        super();
        accessOrder = false;
        putMapEntries(m, false);
    }


    public LinkedHashMap(int initialCapacity,
                         float loadFactor,
                         boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
    }


    public boolean containsValue(Object value) {
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
            V v = e.value;
            if (v == value || (value != null && value.equals(v)))
                return true;
        }
        return false;
    }


    public V get(Object key) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) == null)
            return null;
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }

    /**
     * {@inheritDoc}
     */
    public V getOrDefault(Object key, V defaultValue) {
       Node<K,V> e;
       if ((e = getNode(hash(key), key)) == null)
           return defaultValue;
       if (accessOrder)
           afterNodeAccess(e);
       return e.value;
   }

    /**
     * {@inheritDoc}
     */
    public void clear() {
        super.clear();
        head = tail = null;
    }


    protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
        return false;
    }


    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new LinkedKeySet();
            keySet = ks;
        }
        return ks;
    }

    final class LinkedKeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<K> iterator() {
            return new LinkedKeyIterator();
        }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator()  {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED |
                                            Spliterator.DISTINCT);
        }
        public final void forEach(Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e.key);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }


    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new LinkedValues();
            values = vs;
        }
        return vs;
    }

    final class LinkedValues extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<V> iterator() {
            return new LinkedValueIterator();
        }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED);
        }
        public final void forEach(Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e.value);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

 
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
    }

    final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<Map.Entry<K,V>> iterator() {
            return new LinkedEntryIterator();
        }
        public final boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> e = (Map.Entry<?,?>) o;
            Object key = e.getKey();
            Node<K,V> candidate = getNode(hash(key), key);
            return candidate != null && candidate.equals(e);
        }
        public final boolean remove(Object o) {
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>) o;
                Object key = e.getKey();
                Object value = e.getValue();
                return removeNode(hash(key), key, value, true, true) != null;
            }
            return false;
        }
        public final Spliterator<Map.Entry<K,V>> spliterator() {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED |
                                            Spliterator.DISTINCT);
        }
        public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

    // Map overrides

    public void forEach(BiConsumer<? super K, ? super V> action) {
        if (action == null)
            throw new NullPointerException();
        int mc = modCount;
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
            action.accept(e.key, e.value);
        if (modCount != mc)
            throw new ConcurrentModificationException();
    }

    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        if (function == null)
            throw new NullPointerException();
        int mc = modCount;
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
            e.value = function.apply(e.key, e.value);
        if (modCount != mc)
            throw new ConcurrentModificationException();
    }

    // Iterators

    abstract class LinkedHashIterator {
        LinkedHashMap.Entry<K,V> next;
        LinkedHashMap.Entry<K,V> current;
        int expectedModCount;

        LinkedHashIterator() {
            next = head;
            expectedModCount = modCount;
            current = null;
        }

        public final boolean hasNext() {
            return next != null;
        }

        final LinkedHashMap.Entry<K,V> nextNode() {
            LinkedHashMap.Entry<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            current = e;
            next = e.after;
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class LinkedKeyIterator extends LinkedHashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().getKey(); }
    }
    final class LinkedValueIterator extends LinkedHashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }
    final class LinkedEntryIterator extends LinkedHashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }
}

LinkedHashMap范型类继承于HashMap,实现Map接口

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>

节点类继承于HashMap.Node。HashMap.Node在1.8新版本做了优化,支持红黑树化或者链表化,下一篇分析他

static class Entry<K,V> extends HashMap.Node<K,V> {
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) {
            super(hash, key, value, next);
        }
    }

双端双链表,头尾两端,头(eldest) ,尾(youngest) 。aaccessOrder 为true,链表顺序是访问顺序(最近访问的在最后面)。为false,链表顺序是插入顺序(最新加入的在最后面,队列)


    final boolean accessOrder; 
    transient LinkedHashMap.Entry<K,V> head;
    transient LinkedHashMap.Entry<K,V> tail;

链接节点到末尾,首先保存尾节点,然后用新节点做新的尾节点,如果原尾节点为空,则原链表为空,新节点赋值到头节点。 如果原尾节点非空,则先将原尾节点赋值到新节点的前向指针,再将新节点赋值给原尾节点的后向指针。。。。。 一套常规操作。。。

   // link at the end of list
    private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
        LinkedHashMap.Entry<K,V> last = tail;
        tail = p;
        if (last == null)
            head = p;
        else {
            p.before = last;
            last.after = p;
        }
    }

将src 的一切都给dst,src的财富就是before和after,特殊情况就是头尾的指向。 首先dst接收src的before和after,并且分别保存在b与a. 判断特殊情况,当src为第一个节点,则将头指针指向dst.否则将src的前一个节点的后向指针指向dst。 当src为最后一个节点,让tail指向dst.否则 src的后一个节点指向dst

    // apply src's links to dst
    private void transferLinks(LinkedHashMap.Entry<K,V> src,
                               LinkedHashMap.Entry<K,V> dst) {
        LinkedHashMap.Entry<K,V> b = dst.before = src.before;
        LinkedHashMap.Entry<K,V> a = dst.after = src.after;
        if (b == null)
            head = dst;
        else
            b.after = dst;
        if (a == null)
            tail = dst;
        else
            a.before = dst;
    }

所有内部数据,状态reset,在hashmap的方法调用基础上,置空,头尾指针

 // overrides of HashMap hook methods
    void reinitialize() {
        super.reinitialize();
        head = tail = null;
    }
 /**
     * Reset to initial default state.  Called by clone and readObject.
     */
    void reinitialize() {
        table = null;
        entrySet = null;
        keySet = null;
        values = null;
        modCount = 0;
        threshold = 0;
        size = 0;
    }

创建新节点,并追加到尾部,并返回

  Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
        LinkedHashMap.Entry<K,V> p =
            new LinkedHashMap.Entry<K,V>(hash, key, value, e);
        linkNodeLast(p);
        return p;
    }

创建新节点替换老节点,

 Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        LinkedHashMap.Entry<K,V> t =
            new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }

创建新的树节点,追加尾部,

TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
        TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
        linkNodeLast(p);
        return p;
    }

替换树节点,

 TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
        TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
        transferLinks(q, t);
        return t;
    }

删除节点,入参节点e赋值给p保存,取出p的前一个节点,和后一个节点,分别赋值给b与a 。 将p前后指针置空。 假如,待删除的节点是第一个节点,更新头指针指向p的后继节点,否则,用前一个节点的后向指针指向待删除的后继节点。 假如 待删除的节点是最后一个节点,更新尾指针指向p的前一个节点,否则,用后一个节点的前向指针指向前一个节点。

 void afterNodeRemoval(Node<K,V> e) { // unlink
        LinkedHashMap.Entry<K,V> p =
            (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
        p.before = p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a == null)
            tail = b;
        else
            a.before = b;
    }

afterNodeInsertion 后节点插入,入参清除,removeEldestEntry方法的固定实现为false,所以目前这个方法是不作为。

  void afterNodeInsertion(boolean evict) { // possibly remove eldest
        LinkedHashMap.Entry<K,V> first;
        if (evict && (first = head) != null && removeEldestEntry(first)) {
            K key = first.key;
            removeNode(hash(key), key, null, false, true);
        }
    }
 protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
        return false;
    }

删除节点方法,首先table不为空(数据集合不为空,table也称为桶),(n = tab.length) > 0,里面有数据,index = (n - 1) & hash 可以理解取余找到位置赋值给p, 节点不为空. 如果p的hash 和key就是入参的hash 和key,则用node保存p. 如果不符合,且p后面还有节点(hashMap解决hash冲突采用拉链法,具体实现根据冲突的个数采用链表或者红黑树。个数多的时候用红黑树logn复杂度,一直用链接是线性复杂度不合算)所以下面寻找node的时候也是分 treenode和链表的node。 最后搜索完毕后,如果node节点不为空,且根据入参是否matchValue,来判断是否是最终符合条件的节点, 删除时候继续分树和链表的方式。改变后继指针并删除

 final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    tab[index] = node.next;
                else
                    p.next = node.next;
                ++modCount;
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

modCount这个变量是在改变集合结构的时候递增,是为了实现fail-fast机制,在比如遍历操作中,迭代器保存遍历之前的值,当迭代之中发生了改变,则抛出修改错误。

 ++modCount;

afterNodeAccess,如果是accessOrder,且尾节点不是待处理的节点,就执行操作: 把待处理节点保存在p, 分别取p的前向节点,后向节点分别赋值给b与a. 将p的后向指针置空。 如果p的前向指针为空,则头指针指向p的后向节点,否则p的前向指针指向a 。 假如p的后向指针不为空,则把p的前一节点赋值给p的后向节点的前向指针,否则last保存p的前向指针。 如果 last 为空,则p赋值给头指针,否则last放p的前指针,last的后指针指向p ,p赋值给tail. modCount++,结构改变

  void afterNodeAccess(Node<K,V> e) { // move node to last
        LinkedHashMap.Entry<K,V> last;
        if (accessOrder && (last = tail) != e) {
            LinkedHashMap.Entry<K,V> p =
                (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
            p.after = null;
            if (b == null)
                head = a;
            else
                b.after = a;
            if (a != null)
                a.before = b;
            else
                last = b;
            if (last == null)
                head = p;
            else {
                p.before = last;
                last.after = p;
            }
            tail = p;
            ++modCount;
        }
    }

遍历对象流写

 void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
            s.writeObject(e.key);
            s.writeObject(e.value);
        }
    }

重载的构造函数,默认大小16,冲突因子0.75,一般不指定accessOrder,都是false

    public LinkedHashMap(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor);
        accessOrder = false;
    }


    public LinkedHashMap(int initialCapacity) {
        super(initialCapacity);
        accessOrder = false;
    }


    public LinkedHashMap() {
        super();
        accessOrder = false;
    }

利用 HashMap的putMapEntries。

  public LinkedHashMap(Map<? extends K, ? extends V> m) {
        super();
        accessOrder = false;
        putMapEntries(m, false);
    }

遍历判断,是否包含这个value

public boolean containsValue(Object value) {
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
            V v = e.value;
            if (v == value || (value != null && value.equals(v)))
                return true;
        }
        return false;
    }

***两个方法区别就是找不到的时候是否返回defaultValue ***

 public V get(Object key) {
        Node<K,V> e;
        if ((e = getNode(hash(key), key)) == null)
            return null;
        if (accessOrder)
            afterNodeAccess(e);
        return e.value;
    }

  
    public V getOrDefault(Object key, V defaultValue) {
       Node<K,V> e;
       if ((e = getNode(hash(key), key)) == null)
           return defaultValue;
       if (accessOrder)
           afterNodeAccess(e);
       return e.value;
   }

***清空集合,重置头尾指针 ***

 public void clear() {
        super.clear();
        head = tail = null;
    }

父类的成员变量,key的集合返回 以及一些常规操作

public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new LinkedKeySet();
            keySet = ks;
        }
        return ks;
    }
     final class LinkedKeySet extends AbstractSet<K> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<K> iterator() {
            return new LinkedKeyIterator();
        }
        public final boolean contains(Object o) { return containsKey(o); }
        public final boolean remove(Object key) {
            return removeNode(hash(key), key, null, false, true) != null;
        }
        public final Spliterator<K> spliterator()  {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED |
                                            Spliterator.DISTINCT);
        }
        public final void forEach(Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e.key);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

父类的成员变量,value的集合返回 以及一些常规操作

 public Collection<V> values() {
        Collection<V> vs = values;
        if (vs == null) {
            vs = new LinkedValues();
            values = vs;
        }
        return vs;
    }

    final class LinkedValues extends AbstractCollection<V> {
        public final int size()                 { return size; }
        public final void clear()               { LinkedHashMap.this.clear(); }
        public final Iterator<V> iterator() {
            return new LinkedValueIterator();
        }
        public final boolean contains(Object o) { return containsValue(o); }
        public final Spliterator<V> spliterator() {
            return Spliterators.spliterator(this, Spliterator.SIZED |
                                            Spliterator.ORDERED);
        }
        public final void forEach(Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            int mc = modCount;
            for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
                action.accept(e.value);
            if (modCount != mc)
                throw new ConcurrentModificationException();
        }
    }

Java 8 函数式接口,内部提供了一大堆函数式编程的方式

  // Map overrides

    public void forEach(BiConsumer<? super K, ? super V> action) {
        if (action == null)
            throw new NullPointerException();
        int mc = modCount;
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
            action.accept(e.key, e.value);
        if (modCount != mc)
            throw new ConcurrentModificationException();
    }

    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        if (function == null)
            throw new NullPointerException();
        int mc = modCount;
        for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
            e.value = function.apply(e.key, e.value);
        if (modCount != mc)
            throw new ConcurrentModificationException();
    }

迭代器模式,以及三种继承的迭代器,分别对,key,value ,entry.注意一点就是用迭代器做remove后会更新自己的expectedModCount为最新,再次遍历不会fail-fast

 abstract class LinkedHashIterator {
        LinkedHashMap.Entry<K,V> next;
        LinkedHashMap.Entry<K,V> current;
        int expectedModCount;

        LinkedHashIterator() {
            next = head;
            expectedModCount = modCount;
            current = null;
        }

        public final boolean hasNext() {
            return next != null;
        }

        final LinkedHashMap.Entry<K,V> nextNode() {
            LinkedHashMap.Entry<K,V> e = next;
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (e == null)
                throw new NoSuchElementException();
            current = e;
            next = e.after;
            return e;
        }

        public final void remove() {
            Node<K,V> p = current;
            if (p == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            current = null;
            K key = p.key;
            removeNode(hash(key), key, null, false, false);
            expectedModCount = modCount;
        }
    }

    final class LinkedKeyIterator extends LinkedHashIterator
        implements Iterator<K> {
        public final K next() { return nextNode().getKey(); }
    }

    final class LinkedValueIterator extends LinkedHashIterator
        implements Iterator<V> {
        public final V next() { return nextNode().value; }
    }

    final class LinkedEntryIterator extends LinkedHashIterator
        implements Iterator<Map.Entry<K,V>> {
        public final Map.Entry<K,V> next() { return nextNode(); }
    }

你可能感兴趣的:(源码分析)