Lateral View用法 与 Hive UDTF explode

Lateral View是Hive中提供给UDTF的conjunction,它可以解决UDTF不能添加额外的select列的问题。

1. Why we need Lateral View?

当我们想对hive表中某一列进行split之后,想对其转换成1 to N的模式,即一行转多列。
hive不允许我们在UDTF函数之外,再添加其它select语句。
如下,我们想将登录某个游戏的用户id放在一个字段user_ids里,对每一行数据用UDTF后输出多行。

[java]  view plain  copy
  1. select game_id, explode(split(user_ids,'\\[\\[\\[')) as user_id   from login_game_log  where dt='2014-05-15'   
  2. FAILED: Error in semantic analysis: UDTF's are not supported outside the SELECT clause, nor nested in expressions。  

提示语法分析错误,UDTF不支持函数之外的select 语句,真无语。。。

如果我们想支持怎么办呢?接下来就是Lateral View 登场的时候了。

2. Lateral View explain

2.1 单个Lateral View

Lateral view is used in conjunction with user-defined table generatingfunctions such as explode(). As mentioned in Built-in Table-Generating Functions, a UDTF generates zero or more output rows foreach input row. A lateral view first applies the UDTF to each row of base tableand then joins resulting output rows to the input rows to form a virtual tablehaving the supplied table alias.

解释一下:

Lateral view 其实就是用来和像类似explode这种UDTF函数联用的。lateral view 会将UDTF生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行即每个game_id进行join 来达到连接UDTF外的select字段的目的。

Lateral View Syntax

lateralView: LATERAL VIEW udtf(expression) tableAlias AS columnAlias ( ','  columnAlias)*
fromClause: FROM baseTable (lateralView)*
可以看出,可以在2个地方用Lateral view:

1. 在udtf前面用

2. 在from baseTable后面用


举个例子:

1. 先创建一个文件,里面2列用\t分割,game_id和user_ids

[java]  view plain  copy
  1. hive> create table test_lateral_view_shengli(game_id string,userl_ids string) row format delimited fields terminated by '\t' stored as textfile;  
  2. OK  
  3. Time taken: 2.451 seconds  
  4. hive> load data local inpath '/home/hadoop/test_lateral' into table test_lateral_view_shengli;  
  5. Copying data from file:/home/hadoop/test_lateral  
  6. Copying file: file:/home/hadoop/test_lateral  
  7. Loading data to table dw.test_lateral_view_shengli  
  8. OK  
  9. Time taken: 6.716 seconds  
  10. hive> select * from test_lateral_view_shengli;                                                                                                             
  11. OK  
  12. game101       15358083654[[[ab33787873[[[zjy18052480603[[[shlg1881826[[[lxqab110  
  13. game66       winning1ren[[[13810537508  
  14. game101       hu330602003[[[hu330602004[[[hu330602005[[[15967506560  

下面使用lateral_view

[java]  view plain  copy
  1. hive> select game_id, user_id    
  2.     > from test_lateral_view_shengli lateral view explode(split(userl_ids,'\\[\\[\\[')) snTable as user_id   
  3.     > ;  
  4. Total MapReduce jobs = 1  
  5. Launching Job 1 out of 1  
  6. Number of reduce tasks is set to 0 since there's no reduce operator  
  7. Starting Job = job_201403301416_445839, Tracking URL = http://10.1.9.10:50030/jobdetails.jsp?jobid=job_201403301416_445839  
  8. Kill Command = /app/home/hadoop/src/hadoop-0.20.2-cdh3u5/bin/../bin/hadoop job  -Dmapred.job.tracker=10.1.9.10:9001 -kill job_201403301416_445839  
  9. 2014-05-16 17:39:19,108 Stage-1 map = 0%,  reduce = 0%  
  10. 2014-05-16 17:39:28,157 Stage-1 map = 100%,  reduce = 0%  
  11. 2014-05-16 17:39:38,830 Stage-1 map = 100%,  reduce = 100%  
  12. Ended Job = job_201403301416_445839  
  13. OK  
  14. game101       hu330602003  
  15. game101       hu330602004  
  16. game101       hu330602005  
  17. game101       15967506560  
  18. game101       15358083654  
  19. game101       ab33787873  
  20. game101       zjy18052480603  
  21. game101       shlg1881826  
  22. game101       lxqab110  
  23. game66       winning1ren  
  24. game66       13810537508  

2.2 多个Lateral View

From语句后可以跟多个Lateral View。
A FROM clause can have multiple LATERAL VIEW clauses. Subsequent LATERAL VIEWS can reference columns from any of the tables appearing to the left of the LATERAL VIEW.
给定数据:

Array col1

Array col2

[1, 2]

[a", "b", "c"]

[3, 4]

[d", "e", "f"]

转换目标:
想同时把第一列和第二列拆开,类似做笛卡尔乘积。

int myCol1

string myCol2

1

"a"

1

"b"

1

"c"

2

"a"

2

"b"

2

"c"

3

"d"

3

"e"

3

"f"

4

"d"

4

"e"

4

"f"

我们可以这样写:
[java]  view plain  copy
  1. SELECT myCol1, myCol2 FROM baseTable  
  2. LATERAL VIEW explode(col1) myTable1 AS myCol1  
  3. LATERAL VIEW explode(col2) myTable2 AS myCol2;  

3. Outer Lateral View

还有一种情况,如果UDTF转换的Array是空的怎么办呢?
在Hive0.12里面会支持outer关键字,如果UDTF的结果是空,默认会被忽略输出。
如果加上outer关键字,则会像left outer join 一样,还是会输出select出的列,而UDTF的输出结果是NULL。
[java]  view plain  copy
  1. hive> select * FROM test_lateral_view_shengli LATERAL VIEW explode(array()) C AS a ;  
结果是什么都不输出。

如果加上outer关键字:
[java]  view plain  copy
  1. SELECT * FROM src LATERAL VIEW OUTER explode(array()) C AS a limit 10;  

[java]  view plain  copy
  1. 238 val_238 NULL  
  2. 86 val_86 NULL  
  3. 311 val_311 NULL  
  4. 27 val_27 NULL  
  5. 165 val_165 NULL  
  6. 409 val_409 NULL  
  7. 255 val_255 NULL  
  8. 278 val_278 NULL  
  9. 98 val_98 NULL  
  10. ...  

4.总结:


Lateral View通常和UDTF一起出现,为了解决UDTF不允许在select字段的问题。
Multiple Lateral View可以实现类似笛卡尔乘积。
Outer关键字可以把不输出的UDTF的空结果,输出成NULL,防止丢失数据。

原创文章,转载请注明出自: http://blog.csdn.net/oopsoom/article/details/26001307

-EOF-

你可能感兴趣的:(SQL,Hive)