提示:阅读本文前最好先阅读:
在《spark2.1.0之源码分析——服务端RPC处理器RpcHandler详解》一文曾介绍过服务端RpcHandler对请求消息的处理,现在来看看客户端发送RPC请求的原理。我们在分析《spark2.1.0之源码分析——RPC管道初始化》中列出的代码清单2中的createChannelHandler方法时,看到调用了TransportClient的构造器(见代码清单1),其中TransportResponseHandler的引用将赋给handler属性。
代码清单1 TransportClient的构造器
public TransportClient(Channel channel, TransportResponseHandler handler) {
this.channel = Preconditions.checkNotNull(channel);
this.handler = Preconditions.checkNotNull(handler);
this.timedOut = false;
}
TransportClient一共有五个方法用于发送请求,分别为:
本节只选择最常用的sendRpc和fetchChunk进行分析,其余实现都可以触类旁通。
sendRpc方法的实现见代码清单2。
代码清单2 sendRpc的实现
public long sendRpc(ByteBuffer message, final RpcResponseCallback callback) {
final long startTime = System.currentTimeMillis();
if (logger.isTraceEnabled()) {
logger.trace("Sending RPC to {}", getRemoteAddress(channel));
}
// 使用UUID生成请求主键requestId
final long requestId = Math.abs(UUID.randomUUID().getLeastSignificantBits());
handler.addRpcRequest(requestId, callback);// 添加requestId与RpcResponseCallback的引用之间的关系
// 发送RPC请求
channel.writeAndFlush(new RpcRequest(requestId, new NioManagedBuffer(message))).addListener(
new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (future.isSuccess()) {
long timeTaken = System.currentTimeMillis() - startTime;
if (logger.isTraceEnabled()) {
logger.trace("Sending request {} to {} took {} ms", requestId,
getRemoteAddress(channel), timeTaken);
}
} else {
String errorMsg = String.format("Failed to send RPC %s to %s: %s", requestId,
getRemoteAddress(channel), future.cause());
logger.error(errorMsg, future.cause());
handler.removeRpcRequest(requestId);
channel.close();
try {
callback.onFailure(new IOException(errorMsg, future.cause()));
} catch (Exception e) {
logger.error("Uncaught exception in RPC response callback handler!", e);
}
}
}
});
return requestId;
}
结合代码清单2,我们知道sendRpc方法的实现步骤如下:
代码清单3 添加RPC请求到缓存
public void addRpcRequest(long requestId, RpcResponseCallback callback) {
updateTimeOfLastRequest();
outstandingRpcs.put(requestId, callback);
}
代码清单4 从缓存中删除RPC请求
public void removeRpcRequest(long requestId) {
outstandingRpcs.remove(requestId);
}
请求发送成功后,客户端将等待接收服务端的响应。根据《spark2.1.0之源码分析——RPC管道初始化》一文的图1,返回的消息也会传递给TransportChannelHandler的channelRead方法(见《spark2.1.0之源码分析——RPC传输管道处理器详解》一文的代码清单1),根据之前的分析,消息的分析将最后交给TransportResponseHandler的handle方法来处理。TransportResponseHandler的handle方法分别对《spark2.1.0之源码分析——RPC传输管道处理器详解》一文的图2中的六种ResponseMessage进行处理,由于服务端使用processRpcRequest方法(见《spark2.1.0之源码分析——服务端RPC处理器RpcHandler详解》一文的代码清单4)处理RpcRequest类型的消息后返回给客户端的消息为RpcResponse或RpcFailure,所以我们来看看客户端的TransportResponseHandler的handle方法是如何处理RpcResponse和RpcFailure,见代码清单5。
代码清单5 RpcResponse和RpcFailure消息的处理
} else if (message instanceof RpcResponse) {
RpcResponse resp = (RpcResponse) message;
RpcResponseCallback listener = outstandingRpcs.get(resp.requestId);// 获取RpcResponseCallback
if (listener == null) {
logger.warn("Ignoring response for RPC {} from {} ({} bytes) since it is not outstanding",
resp.requestId, getRemoteAddress(channel), resp.body().size());
} else {
outstandingRpcs.remove(resp.requestId);
try {
listener.onSuccess(resp.body().nioByteBuffer());
} finally {
resp.body().release();
}
}
} else if (message instanceof RpcFailure) {
RpcFailure resp = (RpcFailure) message;
RpcResponseCallback listener = outstandingRpcs.get(resp.requestId); // 获取RpcResponseCallback
if (listener == null) {
logger.warn("Ignoring response for RPC {} from {} ({}) since it is not outstanding",
resp.requestId, getRemoteAddress(channel), resp.errorString);
} else {
outstandingRpcs.remove(resp.requestId);
listener.onFailure(new RuntimeException(resp.errorString));
}
从代码清单5看到,处理RpcResponse的逻辑为:
处理RpcFailure的逻辑为:
fetchChunk的实现见代码清单6。
代码清单6 fetchChunk的实现
public void fetchChunk(
long streamId,
final int chunkIndex,
final ChunkReceivedCallback callback) {
final long startTime = System.currentTimeMillis();
if (logger.isDebugEnabled()) {
logger.debug("Sending fetch chunk request {} to {}", chunkIndex, getRemoteAddress(channel));
}
final StreamChunkId streamChunkId = new StreamChunkId(streamId, chunkIndex);// 创建StreamChunkId
// 添加StreamChunkId与ChunkReceivedCallback之间的对应关系
handler.addFetchRequest(streamChunkId, callback);
// 发送块请求
channel.writeAndFlush(new ChunkFetchRequest(streamChunkId)).addListener(
new ChannelFutureListener() {
@Override
public void operationComplete(ChannelFuture future) throws Exception {
if (future.isSuccess()) {
long timeTaken = System.currentTimeMillis() - startTime;
if (logger.isTraceEnabled()) {
logger.trace("Sending request {} to {} took {} ms", streamChunkId,
getRemoteAddress(channel), timeTaken);
}
} else {
String errorMsg = String.format("Failed to send request %s to %s: %s", streamChunkId,
getRemoteAddress(channel), future.cause());
logger.error(errorMsg, future.cause());
handler.removeFetchRequest(streamChunkId);
channel.close();
try {
callback.onFailure(chunkIndex, new IOException(errorMsg, future.cause()));
} catch (Exception e) {
logger.error("Uncaught exception in RPC response callback handler!", e);
}
}
}
});
}
结合代码清单6,我们知道fetchChunk方法的实现步骤如下:
代码清单7 添加块请求到缓存
public void addFetchRequest(StreamChunkId streamChunkId, ChunkReceivedCallback callback) {
updateTimeOfLastRequest();
outstandingFetches.put(streamChunkId, callback);
}
代码清单8 从缓存中删除块请求
public void removeFetchRequest(StreamChunkId streamChunkId) {
outstandingFetches.remove(streamChunkId);
}
请求发送成功后,客户端将等待接收服务端的响应。根据《spark2.1.0之源码分析——RPC管道初始化》一文的图1,返回的消息也会传递给TransportChannelHandler的channelRead方法(见《spark2.1.0之源码分析——RPC传输管道处理器详解》一文的代码清单1),根据之前的分析,消息的分析将最后交给TransportResponseHandler的handle方法来处理。TransportResponseHandler的handle方法分别对《spark2.1.0之源码分析——RPC传输管道处理器详解》一文的图2中的六种处理结果进行处理,由于服务端使用processFetchRequest方法(见《spark2.1.0之源码分析——服务端RPC处理器RpcHandler详解》一文的代码清单3)处理ChunkFetchRequest类型的消息后返回给客户端的消息为ChunkFetchSuccess或ChunkFetchFailure,所以我们来看看客户端的TransportResponseHandler的handle方法是如何处理ChunkFetchSuccess和ChunkFetchFailure,见代码清单9
代码清单9 ChunkFetchSuccess和ChunkFetchFailure消息的处理
if (message instanceof ChunkFetchSuccess) {
ChunkFetchSuccess resp = (ChunkFetchSuccess) message;
ChunkReceivedCallback listener = outstandingFetches.get(resp.streamChunkId);
if (listener == null) {
logger.warn("Ignoring response for block {} from {} since it is not outstanding",
resp.streamChunkId, getRemoteAddress(channel));
resp.body().release();
} else {
outstandingFetches.remove(resp.streamChunkId);
listener.onSuccess(resp.streamChunkId.chunkIndex, resp.body());
resp.body().release();
}
} else if (message instanceof ChunkFetchFailure) {
ChunkFetchFailure resp = (ChunkFetchFailure) message;
ChunkReceivedCallback listener = outstandingFetches.get(resp.streamChunkId);
if (listener == null) {
logger.warn("Ignoring response for block {} from {} ({}) since it is not outstanding",
resp.streamChunkId, getRemoteAddress(channel), resp.errorString);
} else {
outstandingFetches.remove(resp.streamChunkId);
listener.onFailure(resp.streamChunkId.chunkIndex, new ChunkFetchFailureException(
"Failure while fetching " + resp.streamChunkId + ": " + resp.errorString));
}
}
从代码清单9看到,处理ChunkFetchSuccess的逻辑为:
处理ChunkFetchFailure的逻辑为:
在详细介绍了TransportClient和TransportResponseHandler之后,对于客户端我们就可以扩展《spark2.1.0之源码分析——RPC管道初始化》一文的图1,把TransportResponseHandler及TransportClient的处理流程增加进来,如下图所示。
上图中的序号①表示调用TransportResponseHandler的addRpcRequest方法(或addFetchRequest方法)将更新最后一次请求的时间为当前系统时间,然后将requestId与RpcResponseCallback之间的映射加入到outstandingRpcs缓存中(或将StreamChunkId与ChunkReceivedCallback之间的映射加入到outstandingFetches缓存中)。②表示调用Channel的writeAndFlush方法将RPC请求发送出去。图中的虚线表示当TransportResponseHandler处理RpcResponse和RpcFailure时将从outstandingRpcs缓存中获取此请求对应的RpcResponseCallback(或处理ChunkFetchSuccess和ChunkFetchFailure时将从outstandingFetches缓存中获取StreamChunkId对应的ChunkReceivedCallback),并执行回调。此外,TransportClientBootstrap将可能存在于上图中任何两个组件的箭头连线中间。
经过近一年的准备,《Spark内核设计的艺术 架构设计与实现》一书现已出版发行,图书如图:
纸质版售卖链接如下:
京东:https://item.jd.com/12302500.html