Java并发包FutrueTask详解

Java并发包FutureTask详解

我们已经知道了所有提交给jdk线程池的任务都会被封装成一个FutureTask对象。线程池执行的其实是FutureTask中的run方法。

类图

Java并发包FutrueTask详解_第1张图片
image.png

可以看到FutureTask实现了Future和Runnable两个接口,说明它既可以当做任务提交给线程池,也可作为Future查询任务执行情况或者是取消任务。

成员变量

     /* Possible state transitions:
     * NEW -> COMPLETING -> NORMAL
     * NEW -> COMPLETING -> EXCEPTIONAL
     * NEW -> CANCELLED
     * NEW -> INTERRUPTING -> INTERRUPTED
     */
    private volatile int state;
    private static final int NEW          = 0;
    private static final int COMPLETING   = 1;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;

这是用于定义任务状态的变量。

  • 0-初始
  • 1-执行中
  • 2-已完成
  • 3-异常
  • 4-已取消
  • 5-中断中
  • 6-被中断
/** The underlying callable; nulled out after running */
    private Callable callable;
    /** The result to return or exception to throw from get() */
    private Object outcome; // non-volatile, protected by state reads/writes
    /** The thread running the callable; CASed during run() */
    private volatile Thread runner;
    /** Treiber stack of waiting threads */
    private volatile WaitNode waiters;
  • callable-就是我们传递进来的原始的任务
  • outcome-任务执行的结果
  • runner-执行该任务的线程
  • waiters-等待任务完成的线程

构造函数

public FutureTask(Callable callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

    public FutureTask(Runnable runnable, V result) {
        this.callable = Executors.callable(runnable, result);
        this.state = NEW;       // ensure visibility of callable
    }

FutureTask一共有两个构造函数,第一个构造函数接收一个Callable对象,第二个构造函数接收一个Runnable对象和一个泛型对象result,这个构造函数中调用Executors的callable方法将Runnable对象包装成一个Callable对象。

Executors的callable方法核心如下:

static final class RunnableAdapter implements Callable {
        final Runnable task;
        final T result;
        RunnableAdapter(Runnable task, T result) {
            this.task = task;
            this.result = result;
        }
        public T call() {
            task.run();
            return result;
        }
    }

这是将Runnable转化为Callable对象的过程,其实很简单,由于Runnable并没有返回值,而Callable需要返回值,因此就直接拿我们传递的result作为返回值了。

注意到,构造函数中将任务的状态置为NEW。

成员函数

    public boolean isCancelled() {
        return state >= CANCELLED;
    }

    public boolean isDone() {
        return state != NEW;
    }

第一个方法判断任务是否已经被取消了。可以看到4,5,6状态均视为已取消。

第二个方法判断任务是否已经完成。只要不是初始状态都视为已完成

public boolean cancel(boolean mayInterruptIfRunning) {
        //如果state==NEW,说明任务还没开始,此时只需要根据传递的参数将其状态置为中断中或者已取消即可
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                  mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
            return false;
        //任务并不是初始状态,说明已经开始执行了
        try {    // in case call to interrupt throws exception
            if (mayInterruptIfRunning) {
                try {
                  //尝试中断
                    Thread t = runner;
                    if (t != null)
                        t.interrupt();
                } finally { // final state
                    //将状态置为已中断
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
                }
            }
        } finally {
            finishCompletion();
        }
        return true;
    }

该方法用于取消任务。参数的意义是如果任务已经开始,是否尝试中断。

/**
     * Removes and signals all waiting threads, invokes done(), and
     * nulls out callable.
     */
    private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

唤醒(unpark方法)所有等待该任务的线程,并从等待列表中移除。最后调用了done方法。该方法在FutureTask为空,主要目的是便于子类定制自己的行为。接着将任务置为null。

再来看看最常用的get方法。

public V get() throws InterruptedException, ExecutionException {
        int s = state;
        //此时任务尚未完成,进入到等待中
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        //
        return report(s);
    }

    /**
     * @throws CancellationException {@inheritDoc}
     */
    public V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException {
        if (unit == null)
            throw new NullPointerException();
        int s = state;
        if (s <= COMPLETING &&
            (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
            throw new TimeoutException();
        return report(s);
    }

    /**
     * 该方法只用于获取已经正常完成的任务的返回值 其他情况都会抛异常
     * Returns result or throws exception for completed task.
     *
     * @param s completed state value
     */
    @SuppressWarnings("unchecked")
    private V report(int s) throws ExecutionException {
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }

第一个get方法会一直阻塞到任务完成。第二个get方法会至多阻塞指定的时长。来看看两个get中都调用的一个方法。

private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        //计算等待的截止时间点
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        //自旋开始
        for (;;) {
            //如果当前线程被中断了则移除所有在等待的线程
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            // 如果任务已经结束了 则返回当前状态
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
           //如果任务在进行中(状态马上就会变),则让出cpu,等待下次cpu时间片,暂时不要time out
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
           //头一次自旋则创建一个等待节点,继续自旋
            else if (q == null)
                q = new WaitNode();
            else if (!queued)
               //将当前线程加入到等待队列中,加入到队列的头部
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            //到这里时 当前线程已经加入到等待队列中了
            else if (timed) {
                //如果是设置了时间限制,则计算到时间了没,由于前面让出了CPU时间片,所以有可能再次执行时已经过点了
                nanos = deadline - System.nanoTime();
                //到点后还没执行完则移除q之后的所有等待线程,并返回当前状态
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                //挂起当前线程
                LockSupport.parkNanos(this, nanos);
            }
            else
                //挂起当前线程
                LockSupport.park(this);
        }
    }

再来看看核心方法

public void run() {
        // 前面半句是判断任务的状态是不是初始状态,只有初始状态的任务才能执行run
        // 后面半句是判断执行该任务的线程是否为空,如果不为空则将当前线程赋值给runner
        // 如果任务不为初始状态 或者 已经有指定的执行线程了 就直接return,这说明已经有线程在执行该任务了
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable c = callable;
            //这里就比较简单了,直接用指定的线程执行任务
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    //异常的情况下
                    result = null;
                    ran = false; 
                    setException(ex);
                }
                //正常完成情况下 调用set方法
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }


    protected void setException(Throwable t) {
        //先将任务状态置为完成中
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            //将任务的返回值置为异常对象
            outcome = t;
           //将任务置为异常状态
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
           //唤醒所有等待线程
            finishCompletion();
        }
    }

    /** 保证所有的强制中断只下发到正在执行中或者是重置后的任务中
     * Ensures that any interrupt from a possible cancel(true) is only
     * delivered to a task while in run or runAndReset.
     */
    private void handlePossibleCancellationInterrupt(int s) {
        // It is possible for our interrupter to stall before getting a
        // chance to interrupt us.  Let's spin-wait patiently.
        if (s == INTERRUPTING)
            //如果任务状态是中断中,则一直等待
            while (state == INTERRUPTING)
                Thread.yield(); // wait out pending interrupt

        // assert state == INTERRUPTED;

        // We want to clear any interrupt we may have received from
        // cancel(true).  However, it is permissible to use interrupts
        // as an independent mechanism for a task to communicate with
        // its caller, and there is no way to clear only the
        // cancellation interrupt.
        //
        // Thread.interrupted();
    }

FutureTask还提供了一个可复用自身的方法。我们注意到run方法中会判断任务是否是初始状态,如果不是则不予执行。这意味着一个已经完成的任务是不可能再次被执行的。而FutureTask的runAndReset方法则是让任务实现复用。

protected boolean runAndReset() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return false;
        boolean ran = false;
        int s = state;
        try {
            Callable c = callable;
            if (c != null && s == NEW) {
                try {
                    c.call(); // don't set result
                    ran = true;
                } catch (Throwable ex) {
                    setException(ex);
                }
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
        return ran && s == NEW;
    }

可以看到几乎和run方法一样,但是不同点在于任务执行完毕后并没有调用set方法,即并没有改变任务的状态,也没有将任务的执行结果保存在outcome中。方法仅在任务成功执行且为初始状态时返回true。

最后是该类中的一个内部类

static final class WaitNode {
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

其实就是一个单向链表,保存等待中的线程。

FutureTask中最复杂的方法

/**
     * Tries to unlink a timed-out or interrupted wait node to avoid
     * accumulating garbage.  Internal nodes are simply unspliced
     * without CAS since it is harmless if they are traversed anyway
     * by releasers.  To avoid effects of unsplicing from already
     * removed nodes, the list is retraversed in case of an apparent
     * race.  This is slow when there are a lot of nodes, but we don't
     * expect lists to be long enough to outweigh higher-overhead
     * schemes.
     */
    private void removeWaiter(WaitNode node) {
        if (node != null) {
            node.thread = null;
            retry:
            for (;;) {          // restart on removeWaiter race
                for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
                    s = q.next;
                    if (q.thread != null)
                        pred = q;
                    else if (pred != null) {
                        pred.next = s;
                        if (pred.thread == null) // check for race
                            continue retry;
                    }
                    else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                          q, s))
                        continue retry;
                }
                break;
            }
        }
    }

该方法旨在并发情况下能清除掉所有等待某个FutureTask完成的线程节点。

FutureTask全程没有加锁,全部是调用Unsafe类的cas方法来实现的。

总结

FutureTask将原始的任务(Callable或者Runnable)封装了一层,加入了状态位,并且自己维护状态。最终提交到线程池的对象其实是一个FutureTask,由于FutureTask实现了Runnable接口,因此线程池执行的其实是FutureTask的run方法。任务的状态变更都是FutureTask自己完成的,线程池对于FutureTask内部的状态一无所知。一个FutureTask在执行前被取消,并不意味着线程池不再派出线程去执行FutureTask,线程池照样会派出线程去执行该FutureTask,只是在执行FutureTask的run方法时,FutureTask判断自己已经被取消了,就直接return了,不再执行包在其中的原始任务了。

你可能感兴趣的:(Java并发包FutrueTask详解)